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Abstract. The discrepancy in the mass–density profile of dark matter halos between
simulations and observations, the core–cusp problem, is a long–standing open question in the
standard paradigm of cold dark matter cosmology. Here, we study the dynamical response
of dark matter halos to oscillations of the galactic potential which are induced by a cycle of
gas expansion and contraction in galaxies driven by supernova feedback. We developed a fast
tree–code for PC clusters with GPU which displays high performance and high scalability. We
perform large scale N–body simulations to follow the dynamical evolution of dark matter halos
under the effect of oscillating gravitational potential. Furthermore, we compare the results of
simulations with an analytical model of the resonance between particles and density waves to
understand the physical mechanism of the cusp-core transition.

1. Introduction

The core–cusp problem remains one of the main unresolved contradictions between observation
and theory predicted by the standard paradigm of the cold dark matter (CDM) cosmology.
ΛCDM–cosmological N–body simulations have always predicted a steep power-law mass–density
profile at the center of CDM halos [1], [2], [3]. However, recent observations of lower mass galaxies
have revealed that the density profile of the dark matter (DM) halo is nearly constant around
the center [4], [5], [6].

Mashchenko et al. [7] proposed that periodic variations in the galactic potential driven by
recurrent star burst events may flatten the central DM density profile. Bursts of star formation
induce a large–scale outflow from the galactic center. In time, the mass–loss leads to gas
depletion and temporarily terminates star formation. Subsequently, the expelled gas falls back
toward the galactic center, loses a large amount of internal energy by radiative cooling, and,
once sufficient cold gas has accumulated, a starburst arises again. This cycle of expansion and
contraction of the interstellar gas could lead to a cyclic change in the gravitational potential
around the center of galaxies and have an impact on the density profile of DM halos. Some
cosmological hydrodynamic simulations exhibit this starburst–outflow cycle and also observed a
cusp–core transition at the center of CDM halos [7], [8], [9]. However, the physical connection
between these two phenomena is still unclear.

We investigate the dynamical response of DM halos with a central cusp to a recurring change
of the baryon gravitational potential with collisionless N–body simulations. To this end, we
have developed a fast tree–code on PC clusters with GPU, which displays high performance and
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high scalability parallel processing. In section 2, we briefly describe the tree method. In section
3, we devise a data distribution procedure in memory space and propose an expedient method
to reduce the frequency of warp branches. This implementation speeds up the kernel function
more than three times compared with the methods proposed in previous work.

The results of our DM simulations presented in section 4 show that the cycle of expansion
and contraction of the interstellar gas is an effective mechanism for flattening the central cusp
in the mass density profile of the CDM halo. The recurrence frequency of star formation is
one of the important factors in determining the dynamical response of DM halos. In section 5,
we compare these results with an analytical model of the resonance between DM particles and
the density waves of the interstellar gas that induces the recurring change of the gravitational
potential. This analysis indicates that the resonance is effective in the cusp to core transition of
the CDM halos and that this theory can resolve the core–cusp problem.

2. The tree method for collisionless gravitational systems

DM halos are collisionless self–gravitational systems in which the gravity of the whole system
is more important than encounters of nearby particles. To follow the dynamical evolution of
such systems, N–body simulations are a suitable numerical method. N–body simulations with
large number of particles, N , must be performed to avoid artificial two–body relaxation and to
achieve a sufficiently high resolution that ensures the softening length is much smaller than the
resolution limit of observations of density profiles of DM halos.

The most straightforward and accurate algorithm to compute gravity among particles is
the “direct” method. The computational cost is O(N2), since we would have to compute
gravitational acceleration between all pairs of particles. Therefore this algorithm is unfavorable
to solve problems with large N . Hereafter, we call the particles for which the gravitational
acceleration is computed the “i–particles” and call the particles that interact with i–particles
the “j–particles”. The tree method reduces the cost to O(N logN) by treating a group of
j–particles that are sufficiently far from the i–particle as a single heavy j–particle [10].

The tree method consists of 2 parts, tree–construction and tree–traversal. In the first part,
the tree–construction, we construct an oct–tree of particles. We split the cube containing all
particles recursively into 8 (in 3D) smaller cubes (figure 1), and we link all cubes to their
daughter– and sister–cubes (figure 2). We continue the recursion until every cube contains less
than or equal to Ncrit particles. We set the parameter Ncrit = 4. After the linking operation,
we compute the mass and position of each cube. The mass of the cube is the sum of that of the
contained particles, and its position is the center of mass of the contained cubes. In the second
part, the tree–traversal, we walk the tree constructed in the previous part for each i–particle.
A cube is sufficiently far from an i–particle if its angular size, θ, is smaller than a critical size
θc =0.6.

When we reach a cube for which theta > thetac, we walk to a daughter–cube. If we reach a
cube for which theta < thetac we walk to a sister–cube. In the latter case, j–particles contained
in the cube are treated as a single heavy j–particle, reducing the cost of computation.

The tree method to solve collisionless systems reduces the computational cost to O(N log(N))
and produces results of comparable accuracy to the direct method if θc is sufficiently small. N–
body simulations are manageable because they are inherently boundaryless and scale–free. Thus,
N–body simulations utilizing the tree method are commonly used in computational astrophysics.

3. Implementation and performance of our tree code on GPU clusters

3.1. Overview of the code

We speed–up our tree code by optimizing it for GPU clusters. Following previous work, we
let CPU cores compute the tree–construction and let GPUs compute the tree–traversal [11],
[12]. We order particle data along a Peano–Hilbert curve, a type of space–filling curve, in
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Figure 1. Recursive splitting of cubes into 8 (in 3D) smaller cubes until all cubes contain less
than Ncrit particles (blue dots). In this schematic diagram, Ncrit is 1, whereas in our simulations
Ncrit = 4.

Figure 2. Links between cubes. Red and green arrows indicate links to daughter– and sister–
cube, respectively.

memory space superior to Morton ordering, to achieve high cache hit rate. Furthermore, we
have parallelized our code using MPI. Each MPI process becomes the host of a GPU, owns
partial particle data, constructs a partial tree composed of its i–particles, and communicates
necessary tree data with other processes.

“Warp branches” are an important issue in GPU computing. We explain the problem for the
case of the NVIDIA Fermi architecture. In this architecture of GPUs, 32 cores work concurrently
with the same instruction stream. In other words, GPU cores work in the manner of SIMD.
This cluster of 32 cores is called a warp. When two or more different instructions emerge among
the 32 cores, a large overhead arises because the instruction can only be processed sequentially
within a warp. Such warp branches occur during the tree–traversal part whenever we step to
a daughter– or sister–cube. Warp branches become less frequent if we bundle routes for given
i–particles in the tree structure.

To achieve this, we propose a method in 2 steps: The first step is a “vectorization” step.
We vectorize the operations of route selection in the tree structure and that of calculating
gravitational acceleration for V i–particles, where V is the vector length or the number of
particles per GPU core. We show a conceptual diagram of this step in figure 3. We bundle
routes of V i–particles in a GPU core by measuring the distance to the cube from the nearest
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particle in a core, which is circled red in figure 3. We then select the next step in the tree
structure, a daughter– or the sister–cube, by using the distance to the present cube from the
nearest particle among the bundled ones. If θ > θc for the nearest particle, we take a step to
a daughter–cube even if other particles are sufficiently far from the present cube. If θ < θc
for the nearest particle, we compute gravitational acceleration from that cube to the i–particles
by using the respective distance between each i–particle and the cube. After that, the walk
continues to a sister–cube. The frequency of warp branches drops with increasing vector length,
V . However, the amount of work per GPU core is proportional to V . Thus it is not advisable
to set V very large.

The second step is a “grouping” step, which alleviates the problem of vectorization described
above to some degree. We bundle routes for i–particles among several cores in the same fashion
as we bundle the routes for i–particle in a core (figure 4). Again, the nearest particle in the
group is circled red. We select the next step in the tree-traversal for i–particles by the value
of the distance to a cube from the nearest particle. By grouping, we can increase the number
of bundled i–particles without increasing the number of particles owned by a GPU core. The
number of bundled particles becomes V ×G, where G is the number of group members.

Vectorizing and grouping will decrease the frequency of warp branches, but will increase the
amount of computation. This is because, by choosing the particle in a vector or group nearest
to the cube, will reduce the number of particles for which θ < θc and for which we could treat
the cube as a single heavy j–particle. Thus we expect that there exist an optimal pair of values
for the vector length and number of group members. The Peano–Hilbert ordering of particles is
very important in our method since bundling routes for spatially distant particles results in a
large amount of unnecessary computations.

Figure 3. Conceptual diagram of vectorization. Blue dots represent i–particles. The red circled
particles are the closest ones to the cube of j–particles. In this case, each GPU core holds 3
i–particles (V = 3).

Figure 4. Conceptual diagram of grouping. The same i–particles are shown as figure 3. In this
case, the number of group member, G, is 2, and 6 i–particles have been bundled into a group.

3.2. Computing environment for performance measurements

We measure the performance of our code on the GPU cluster HA-PACS, which was installed at
the Center for Computational Sciences of the University of Tsukuba in 2012 [13]. HA–PACS has
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4 NVIDIA Tesla M2090 GPU cards per node. As described above, each MPI process is the host
of a GPU, and we launch up to four MPI processes per node. The specifications of HA–PACS
are shown in Table 1.

Table 1. Compendium of HA–PACS
CPU Intel(R) Xeon(R) CPU E5-2670 2.60GHz

(8 cores/socket × 2 sockets = 16 cores/node)
GPU NVIDIA Tesla M2090 (4 GPUs / node)

Main Memory 128 GB, DDR3 1600MHz,
4 channel / socket, 102.8 GB/s/node

OS CentOS release 6.1 (Final)
CPU Compiler GCC 4.4.5-6
GPU Toolkit CUDA 4.0.17

Interconnection Infiniband QDR × 2 rails
MPI MVAPICH2 1.8

3.3. Performance of the code

In figure 5, we showed the results of performance measurements for the GPU part of the kernel
function, which is essentially the tree–traversal part. In this test, we simply follow the evolution
of particles initially distributed with the Navarro–Frenk–White (NFW) profile, which is often
used for CDM halos [1] and a random velocity field. We set the number of particles, N = 223 ≈
8 million, and the tolerance parameter of the tree method, θc = 0.6. We study the effects
of vectorization and grouping by comparing runs with different combinations of V and G.
Compared with the case of no vectorization or grouping, (V,G) = (1, 1), tree–traversal may
become more than 3 times faster. As expected, there exists an optimal pair of values for the
vector length and the number of group members. In this test, the optimal pair is (V,G) = (4, 4).
In general, the optimal pair values depends on the N–body problem and the GPU architecture.

We have parallelized the tree–construction and tree–traversal operations with MPI. N
particles are sorted according to the Peano–Hilbert space–filling curve, and N/Np particles
are assigned to each MPI process, where Np is the number of MPI processes or GPU cards.

We now check the performance of the whole code. The tree–construction, tree–traversal,
and the construction of the minimum partial trees that are communicated to other processes
(Locally Essential Tree; LET) [14] take up most of the computational time.

Figure 6 shows the performance for strong scaling as a function of Np. We set the total
number of particles, N = 225 ≈ 32 million. When Np < 10, the scaling is good. However, the
performance saturates for Np > 10. We suspect the reason for the performance saturation of the
kernel function (blue line) is the worsening load balance between MPI processes. Because we
have sorted and assigned N/Np particles to each process, some processes are assigned particles
from the central part of the computational domain while others are assigned from the outskirts of
the domain. The number of cubes encountered in the tree–traversal for these processes can differ
in this test by a factor ∼ 5. To improve the load balance, we need to change the way particles
are assigned to processes. The time to construct the LET (magenta) is nearly constant, and
becomes dominant when Np > 10. Another issue is that, in the current implementation, some
CPU cores remain idle. The idle CPUs could be used to accelerate the operation of construction
of LET.

We show the performance for weak scaling in figure 7. Each process holds N1 = 224 ∼ 16M
particles. The total number of particles is N = N1 × Np. The time to compute gravitational
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Figure 5. The dependence of the computational time of the kernel function on the vector
length, V , and group size, G. Each line is the result for a different V . The best performance for
this test calculations is obtained for (V,G) = (4, 4).
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Figure 6. Strong scaling of different components of our code. Horizontal and vertical axes are
number of MPI processes, Np and computational time in the unit of second. Each line represents
the time for tree–construction (green), kernel function (blue), and making LET (magenta). The
red line is the total time. The black dashed one shows a scaling ∝ N−1

p .

acceleration (red) is proportional to logNp. This can be explained as follows: The computational
cost of the tree method is O(N logN) = O(N1Np logN1Np). Through parallelization, it becomes
O(N1 logN1Np). Since N1 is a constant, the computational cost ∝ logNp. In other words, the
depth of the tree structure is proportional to logN ∝ logNp. In future work, we will enable the
computation of the kernel function and the construction of the LET to occur in parallel through
MPI communication to improve performance.
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Figure 7. Weak scaling of different component of our code. The black line represents a scaling
∝ logNp. Other lines and axes have the same meaning as in figure 6.

4. Results of N–body simulations with oscillating galactic potential

We investigate the dynamical response of DM halos to oscillations of the galactic potential using
N–body simulations.

4.1. Set up

The N–body system represents a DM halo. Initially, the halo profile follows the NFW model in
virial equilibrium state. The NFW profile has a central cusp. To express the baryon component,
we add an external Hernquist potential [15] to the N–body system and change its scale length
in an oscillating manner to represent the gas contraction and expansion cycle driven by periodic
starbursts. We choose a scale length typical for dwarf galaxies, 1kpc and an oscillation amplitude
of 1kpc, that represent massive outflows. Fundamental parameters adopted in our simulations
are listed in Table 2. We investigate three different values for the oscillation period of the
external potential, T , which are chosen to reflect the star formation histories of observed local
dwarf galaxies [16] [17] [18].

Table 2. Fixed parameters in our N–body simulation.
Number of particles 224 ∼ 16M, 227 ∼ 128M
Softening (resolution) 0.004 kpc
Mass of DM halo 109M⊙

Scale length of DM halo 2 kpc
Baryonic mass 1.7× 108M⊙

4.2. Results

Figure 8 demonstrates the resultant density profile of DM halos after 10 oscillation periods. The
red, blue, and magenta lines show the results for T = 10, 30 and 100 Myr, respectively. The
yellow line is the result of a high resolution run for T = 30 Myr, in which we used 8 times the
number of particles, which demonstrates good convergence of the solution. The black dashed
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line represents the initial NFW model, which has a central cusp. It is clear that the cusp has
transitioned to a core, and that the resultant core scale depends on the oscillation period of the
external potential, T . We have confirmed that the resultant core structure is stable during at
least the first 100 oscillation periods.
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Figure 8. Density profiles of DM halos after 10 oscillation periods. The horizontal and vertical
axes are the distance r from the galactic center and mass-density of the DM halo, respectively.
The red, blue, and magenta lines show the results for T = 10, 30 and 100 Myr, respectively.
Vertical lines are the predictions of the core scale by our analytical model (see section 5).

We also analyze the temporal Fourier spectrum of radial velocities of the modified DM halos.
In figure 9, we show the Fourier spectrum of the radial velocity of the system, v̂r, as a function of
r for the Fourier frequencies, ω = 2π/T . Comparing the location of the peaks of the spectra in
this figure with the core length scale in figure 8, we find that the two match very well. We now
turn to the physics of the mechanism that accelerates the DM particles on core length scales
and creates the core structure from an initially cuspy profile.

5. Linear analysis of resonance

What is the physical reason for the transition from DM cusp to core in our simulations? To
investigate this, we performed a linear analysis of the resonance between the density waves and
the particles. We approximate the particle system by a fluid and consider the situation in which
the equilibrium system, labeled 0, is perturbed by the external force (subscript ex), inducing a
change in some physical quantities (subscript ind). We focus on a particular group of particles
of some constant density, ρ0, and velocity, v0, in the equilibrium state. We assume the external
force has a sinusoidal form,

−

∂Φex

∂x
= A sin (kx− Ωt), (1)

where A, k, and Ω are the oscillation strength, which is a positive constant, the wavenumber,
and the frequency of the external force, respectively.

We solve the linearized Euler’s equation and the equation of continuity, and derive the
following solutions for the induced velocity and induced density enhancement;

vind(t, r) =
A

Ω− kv0
cos (kr − Ωt), (2)
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Figure 9. Fourier spectrum of the radial velocity of the system, v̂r as a function of r. Each line
represents the spectrum of same run as figure 8.

ρind(t, r) =
Aρ0k

(Ω− kv0)2
cos (kr − Ωt). (3)

We find that the coefficients will diverge when the frequency of the external force Ω ≡ 2π/T
equals kv0. This is analogous to the resonance in the forced oscillation problem of harmonic
oscillators. Thus, we conclude that DM halos are strongly affected by resonance between DM
particles and density waves, and a core structure can form this way.

We may rewrite the resonance condition, kv0 ∼ Ω, as

td(r) ∼ T, (4)

where td(r) is the local dynamical time of the DM halo measured at r. Using this condition, we
can predict the core scale created by resonance. The vertical lines in figure 8 are the predictions
of this analytical model. They match well with the scales of resultant core.

6. Summary

To resolve the core-cusp problem of DM halos, we have studied the dynamical response of DM
halos to oscillations of the gravitational potential. We have performed collisionless N–body
simulations utilizing the tree algorithm. We speed–up our tree code by optimizing it for GPU
clusters. We have proposed a method to reduce the frequency of Warp branches, and, as a result,
the tree–traversal operation has been accelerated. From our simulations, we have arrived at the
conclusion that resonance between DM particles and gas oscillation may play an important role
to flatten the central cusp. Our analytical model predicts the core scales seen in the simulations
quite accurately.
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