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Abstract.
Causal sets is an approach to quantum gravity, where spacetime is replaced by a causal

set. It is fundamentally discrete, and the causal relations between spacetime elements is the
only structure that remains. A complete theory should have (i) kinematics (ii) dynamics and
(iii) phenomenology. In this contribution we will explore the dynamical part of the theory,
focusing on recent developments. We will analyse (a) classical dynamics of the causal set,
(b) quantum dynamics of matter and fields on a classical causal set and finally (c) quantum
dynamics of the causal set.

1. Motivation
Constructing a quantum theory of gravity, consistent, widely accepted and confirmed by
experiments is probably the most important open problem in current theoretical physics. The
mathematical and conceptual difficulties that arise, suggest we may need to abandon some of
the a-priori assumptions we make about nature. This is essentially done in all approaches to
quantum gravity. In this contribution, we examine the causal sets approach (first appeared in [1]
while in [2] some reviews can be found). It is the nature of spacetime as a differential manifold
with a Lorentzian metric on it that is questioned in this approach. It is replaced by a causal
set that is (i) a discrete entity with (ii) only remaining structure the causal relations between
spacetime points. Both assumptions, discreteness and causality are based on indications from
current physics and naturality arguments.

Approaches to quantum gravity, that start with a continuous spacetime, observe a possibly
effective, discreteness. Examples of the above, are the discreteness of the volume operator
in Loop Quantum Gravity and the dualities between small and large scales in string theory.
Discreteness of spacetime, could also remove the infinities we face in quantum field theory, which
are problematic even though we have “learned living” with them. Furthermore, singularities
in general relativity could be avoided. Indications for discreteness of spacetime, exist in black
hole thermodynamics, where the finiteness of the entropy that is proportional with the area
of the horizon can be understood easier if that corresponded to the number of fundamental
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area units that cover the horizon. Finally, certain modifications of gravity that account for
the smallness of the cosmological constant also point towards discreteness of spacetime. All
these arguments suggest, that a natural starting point for a quantum gravity theory, would be
a discrete spacetime.

The second feature that is used in causal sets in order to replace the standard view of
spacetime, is the causality. The concept that two spacetime points are causally related,
has the direct explanation, that objects/fields at the one (the one being “earlier”) can affect
objects/fields at the other. It is a natural and intuitive concept. Even though we are used
to the standard view of spacetime, arguably the topology and differential structure and the
Lorentzian signature metric, are far more abstract concepts than the simple notion of causality.
Moreover, as we will see below, the causal relation can encode most of the information of the
Lorentzian signature metric on a manifold.

In section 2 we will define mathematically a causal set and explain in which sense it can
replace spacetime, give some basic definitions that will be required later on and divide the
analysis of a theory on 3 parts, the kinematics, dynamics and phenomenology. Section 3 is the
main part, dealing with the dynamics of causal sets. In section 3.1 we examine the classical
dynamics of a causal set, in section 3.2 the developments that have occurred in the quantum
dynamics of matter and fields on a classical/fixed causal set and in section 3.3 the quantum
dynamics of the causal sets themselves. Finally in section 4 we will summarise and conclude.

2. Definition and basics
Causal set is the mathematical entity that replaces spacetime in this approach to quantum
gravity. Mathematically is a set C with the following features.

(i) A partial order relation ≺ which is (a) irreflexive (x ⊀ x) and (b) transitive (x ≺ y ≺ z ⇒
x ≺ z)

(ii) The partial order corresponds to the causal relation between elements of C, so if x ≺ y it
means that x is in the past of y.

(iii) Locally finite: [x, y] ≡ |{y such that x ≺ y ≺ z}| < ∞ ∀ x, z ∈ C. And |A| indicates
cardinality of the set A. It is this condition that imposes the discreteness of spacetime,
since it requires that between every pair of elements of the causal set, to be only a finite
number of other elements.

Here we should point out that the standard spacetime, if we use the metric to define causal
relations, satisfies the first two conditions we required above and it is only the locally finiteness
condition that is not satisfied.

Following the definition of a causal set, an explanation is needed on why could such an entity
replace the continuum spacetime. It is based on works of Hawking [3] and later of Malament
[4] and in particular on this theorem by Malament:

The metric of a globally hyperbolic spacetime can be reconstructed uniquely from its
causal relations up to a conformal factor.

This theorem states that most of the information of the metric is encoded in the causal relations
of the spacetime points. Having the conformal metric, means that the metric is completely
fixed, once we determine the spacetime volume of each neighborhood. However, the discreteness
of spacetime provides a very natural way to fix the volume. Since each spacetime interval, by
definition, has a finite number of elements, by assuming that each element corresponds to some
fundamental discrete volume (Plank volume), the volume of each spacetime interval is uniquely
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determined. In other words we make the correspondence “Volume = number of elements ×
Plank volume”. In a schematic way we have that “Order + Number = Geometry ”. This leads
to the central conjecture of causal sets (also called the Hauptvermutung):

Central Conjecture: Two distinct, non-isometric spacetimes cannot arise from a
single causal set.

The conjecture is still not proven, however it has very solid theoretical and numerical evidence
for its validity1. Having a causal set as the real structure existing in nature, we may ask under
what circumstances a spacetime (Lorentzian manifold) can be said to approximate a given
causal set. To make the above precise we define the concept of a faithful embedding :

A faithful embedding is a map ϕ from a causal set P to a spacetime M that:

(i) preserves the causal relation (i.e.,x ≺ y ⇐⇒ ϕ(x) ≺ ϕ(y))
(ii) is “volume preserving”, meaning that the number of elements mapped to every

spacetime region is Poisson distributed, with mean the volume of the spacetime
region in fundamental units, and

(iii) M does not possess curvature at scales smaller than that defined by the
“intermolecular spacing” of the embedding (discreteness scale).

The central conjecture can be restated as “a causal set cannot be faithfully embedded in two
non isometric spacetimes”.

While physically, it is the spacetime approximating the causal set, we can ask the inverse
question and in particular to ask to find a causal set that approximates a given spacetime. This
will happen, when the number of elements of the causal set is large and we speak of continuum
approximation, which is the analogue of a continuum limit2.

An interesting thing to point out, is that following the definition of a faithful embedding,
we can see that a regular lattice does not correspond to Minkowski spacetime since there is no
faithful embedding between them. The condition (ii) states that every spacetime interval should
have a number of elements of the causal set mapped that is proportional to the volume (on
average). Considering a boosted frame one can easily notice that there are large volumes with
no elements at all. It is well known that there is a tension between discreteness and Lorentz
invariance. However, we can have a causal set such that it faithfully embeds in Minkowksi
spacetime, by considering a random lattice. One can generate such a lattice, by sprinkling

elements in Minkowski spacetime, randomly with probability P (n) = (ρV )n exp−ρV

n! and variance√
V which is called a Poisson sprinkling.
Causal sets constructed in this manner, respect Lorentz invariance at the kinematic level, and

evade the above mentioned tension between discreteness and Lorentz invariance. Other discrete
approaches, do not satisfy this condition on kinematic level and expect Lorentz-invariance to
emerge at a later stage (e.g. through superposition of Lorentz-violating objects). Further
analysis of the above can be found in [11].

We should note that according to the definition, a given causal set is not necessarily faithfully
embedded in a manifold. In other words, a random causal set does not always correspond to
some continuous spacetime. Moreover, if we take a typical causal set consisting of a large
number of elements n, it does not look like a manifold, but rather as a Kleitman-Rothschild

1 Most of the work on the kinematics of causal sets, regarding the dimension (e.g. [5, 6]), topology ([7]), timelike
and spacelike distances ([8, 9]), provide support to the conjecture.
2 It is analogue, since the actual limit of taking some scale going to exactly zero, is never taken as for example
in CDT [10].
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(KR) order [12]. A typical causal set is selected, by pure counting, if we assume that any
possible order (causal set) has equal weight. The KR orders have only three layers (i.e. longest
chain is a 3-element chain) and 1/4 of elements are in the first layer, 1/2 in the second and
the remaining 1/4 in the third. These causal sets are clearly not manifold-like (they have only
“three moments of time”). It remains a task for the dynamics of the theory, to select a causal
set that can be faithfully embedded on a continuous spacetime rather than one that is of the
KR type.

To this end, we will give some definitions for causal sets that will be needed later in the
text. We call links a pair of elements x ≺ y such that @ z such that x ≺ z ≺ y. In other words
two elements are linked, if there is no element “between” them. We call chain C, a collection
of elements that ∀ x, y ∈ C, either x ≺ y or y ≺ x. In other words, all the elements in the
cain are ordered, and it is the causal set analogue of a timelike curve. Closely related is the
definition of a path which is a chain with the extra condition that each pair of consecutive
elements are links. An anti-chain is a collection of elements A, that ∀ x, y ∈ A neither x ≺ y
nor y ≺ x. I.e. it is a collection of unrelated elements. To consider a maximal anti-chain,
means that it is an anti-chain such that all the remaining elements of the causal set are to
the past or to the future of at least one element of the anti-chain, i.e. we cannot extend the
anti-chain and still remain anti-chain. The maximal anti-chain is the causal set analogue of
spacelike surface.

When constructing a theory, there are three elements that one needs to address. First is
the kinematics of the theory, and for causal sets, one can see how the concepts of dimension
[5, 6], topology [7], distances (temporal and spatial) [8, 9], and geometry can arise. Second
is the dynamics, that is the topic of this contribution. Finally, we have the phenomenology.
It deals with the observable consequences that the novel elements of the theory lead us. For
causal sets people have explored the cosmological constant problem that attains a potential
solution [13, 14], entropy bounds and black hole entropy and thermodynamics [15, 16] and
deviations/diffusion of motion due to the fundamental discreteness [17].

3. Dynamics
While from the kinematics of a theory one can gain some insight in the understanding of
nature, the basic physical content of a theory is encoded in the dynamics. We will divide
our analysis into three parts. Firstly we will examine the possible classical dynamics that a
causal set can have. This should be done in a way that is intrinsic to the causal set itself
and make use solely of the causal relations. The analogue in continuum physics, would be
the theory of general relativity which is the classical theory for spacetime. Secondly, we will
explore, the dynamics of quantum matter and fields on a given “classical” causal set. This is
the analogue of quantum field theory on a fixed curved spacetime. Finally we will analyse, the
possible quantum dynamics of the causal set itself, which is the final aim in order to construct
a quantum theory for gravity.

There are two issues that one needs to consider when, in the attempt to quantise gravity,
takes as starting point an alternative (possibly discrete) structure for spacetime. The first
issue is the so-called “entropy” problem. It is common in all discrete approaches. By pure
counting, a typical discrete structure (in our case a causal set) does not correspond in the
appropriate limit to a continuous spacetime. As we have seen the typical causal set is a KR
order. In constructing the appropriate dynamics, one should overcome this difficulty and obtain
a dynamical way of selecting causal sets that do correspond to continuous spacetimes.

The second issue, is which direction one would take for the (classical or quantum) dynamics.
On can have a bottom-up point of view, where we start from the fundamental relations of causal
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sets and by imposing conditions that are natural to the order itself we obtain the dynamics.
This is the most ambitious but also principled way. Alternatively, we can have a top-down
approach, where one gets motivation from continuous spacetime, rephrase the concepts in
terms of the causal sets relations and uses them in order to obtain the dynamics. While, this
is not conceptually preferable, if assume that nature is a causal set in reality, technically is
easier to proceed and it may lead to useful conclusions.

Finally, having formally quantise causal sets is not the end of the story. To make contact
with experiments, one needs a proper way to interpret the theory. There are two aspects that
need consideration. First one needs to formally construct questions that are invariant from
the arbitrary choices that were made during the quantisation process and do not correspond to
physical degrees of freedom. This is guaranteed by dealing with re-labelling invariant questions,
which is the discrete analogue of diffeomorphisms invariance. The second aspect has to do with
the interpretation of quantum theory for the case that we have a single closed no-repeatable
system. The problem is twofold, first we need an interpretation that does not require an
external observer and secondly that gives predictions for single systems rather than ensembles
of identically prepared systems. These thoughts, along with the inability of having a canonical
approach due to the fundamental spacetime nature of causal sets, leads to interpretations based
on histories, such as the co-event formulation [18] or the decoherent histories approach [19].

3.1. Classical Dynamics for Causal Sets
The classical dynamics of causal sets that have been analysed so far, belong to the “bottom-up”
approach. We start with the basic concepts of causal sets, and by imposing certain physical
conditions we generate the most general dynamics that can be obtained. The dynamics that
we consider, have certain free-parameters that along with assumptions on the initial condition,
determine the type of “evolution” of a causal set. In this general set up, the dynamics are not
deterministic, but rather stochastic. For a more detailed description the reader is directed to
the original references [20].

The arena that the dynamics of causal sets take place, is the set of all causal sets. This
set has a natural partial order on it, which is that two elements (i.e. causal sets), are related,
if the one is subset of the other, when viewed as partial orders. This partial order of partial
orders, is called poscau (see Fig. 3.1). It is the analogue of superspace for geometrodynamics,
or more precisely in our case, the space of all spacetimes.

The dynamics we will consider, generate the causal set in the following manner. We start
with one element, and then grow the causal set by adding one more element at every step/level.
In each level, the newborn element has to be determined whether it is at the past or future or
unrelated to every other, already existing element of the causal set. This corresponds to a move
from one point of poscau to another, since the old causal set is obviously subset of the new.
The most general dynamics, would allow with some probability any of those transitions. This
process of growing the causal set with adding a new element, with some probability of where to
add it, is called Classical Growth Dynamics (CGD). This process has an “internal/parameter
time” which is the number of born elements, which however, should not be confused with the
time observed by observers in the causal set itself. These stochastic dynamics are actually
generalisations of random walks.

However we are not totally free to choose any parameter for the probabilities of the newborn
elements. There are the following physical conditions that our probabilities are required to
satisfy, that turn out to be very restrictive.

(i) Internal temporality. Each new element is born to the future or spacelike to all existing
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elements (never at the past). A natural requirement, that guarantees that the “present
time” causal set (in the internal time defined above), is not affected by adding later more
elements.

(ii) Discrete general covariance. The probability of arriving at a particular causal set does
not depend on the order the elements are born. In other words the probability does not
depend on the path chosen on the Figure, but only on the starting and ending point on
the poscau. This condition guarantees label-invariance of the theory and it is the discrete
analogue of diffeomorphism invariance at general relativity.

(iii) “Bell’s causality”. The probability for the newborn element depends only on the
elements of the existing causal set that belong to the past of the new element and not from
the total causal set. This condition guarantees some sense of locality for the evolution
of the causal set. Quantum paradoxes, such as the Bell inequalities, that arise due to
non-locality gave the name for this condition. It is therefore believed, that for quantum
dynamics of the causal set this condition might need to either be dropped or relaxed to
accommodate those paradoxes. However, non-local effects on a causal set may arise even
if the dynamics of the causal set itself are local in the way defined above and therefore
altering this condition is not theoretically necessary.

(iv) The Markov Sum rule. Starting from a given causal set with n elements (i.e. a point
at the poscau) and adding a single element, give rise to many possible different causal sets
with n+ 1 elements. The sum of the probabilities for all these n+ 1 elements causal sets,
need to sum up to one.

The above 4 conditions, are very well physically motivated and seem very general. However,
they restrict the possible parameters and there is only one free parameter for each level of
the growth process. By each level, we mean, the total number of elements of the causal set
(see details in [20]). The relation these parameters have between them give rise to different
dynamics. For example, setting them equal, give rise to the well known and explored example
of transitive percolation (see references in [20]). The choices for dynamics are still many
(remember that a typical realistic causal set has huge number of elements), and the resulting
causal sets differ. Since we have started with concepts intrinsic to causal sets we have followed
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a strictly bottom-up approach, and this is how far we can reach without resorting to concepts
arising from continuous spacetimes. Despite the fact that certain choices of the parameters
give rise to causal sets with notable similarities with cosmological models [21] (and certainly
nothing like the KR typical causal sets), it is believed that the resulting causal sets are not in
general manifold-like. It is thus believed that in order to explain the continuum-like behaviour,
we may need to resort to quantum dynamics, as we will see in section 3.3.

3.2. Quantum Matter on a fixed Causal Set
The second type of dynamics we consider, is the dynamics of matter and fields on a single fixed
causal set. As already stated, this is the analogue of fixing the background to a curved,
in general, background. One needs to first recover the standard results from continuous
spacetimes, and then explore the possibility for deviations from them due to the underlying
fundamental discreteness. The effects are typically small and may depend on free parameters
and possibly on the full quantum dynamics. In any case, this analysis may give us hints and
directions both for developing quantum dynamics and for testing (with experiments eventually)
the theory.

Matter on a causal set may arise in two ways. Either from the relations between elements
of the causal set or by adding matter or fields on a given causal set. The first one is more
intrinsic to the causal set but will not be explored here, since not much progress has been
made. Matter degrees of freedom could appear e.g. in a Kaluza-Klein way, from variations of
the causal structure at different parts of the total causal set. The second one will be explored
in the following.

First we will explore the case of a causal set that faithfully embeds into Minkowski spacetime.
The way this causal set arises is the issue of quantum dynamics of the causal set and indications
for that will be reported in the next subsection. Secondly, using certain results from the flat
case, we will consider causal sets that faithfully embed into curved spacetimes.

One thing to do is to consider point particles (massive for now), moving along a chain of the
causal set that faithfully embeds into Minkowski spacetime. Several models were considered
[17, 22] that shared the common feature, that in the continuum approximation the particle
followed roughly a timelike geodesic, slightly deviating (swerving) from this motion. The
resulting effect, is that of a drift motion, and the evolution equation turns out to be a diffusion
equation that depends on a single parameter the “diffusion strength” k. We will present here
briefly the first model as in [22]. The particle follows trajectories that are chains of the causal
set {e1, e2, · · ·}. There is a time tf , below which the causal set may behave non-locally. It is
called “forgetting time” and above this it behaves normally. If the particle has position en with
four momentum pn the next element is chosen such that:

• en+1 is at the causal future of en and at proper time tf .

• The momentum change |pn− pn+1| is minimized. Note, that pn+1 is on the mass shell and
proportional to the vector between en and en+1.

The effect of this, is a motion which is as straight as possible, with some deviations, due to
random fluctuations that the particle’s momentum has. Taking the continuum approximation
leads to the following diffusion equation (see [22]).

∂ρ

∂τ
= k∇2ρ− 1

m
pµ∂µρ (1)

The next stage is to examine the consequences of discreteness for massless particles.
Technically, there is an extra difficulty, which arises due to the fact that the trajectories are
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no longer chains, since chains correspond by definition to timelike curves. We are lead to an
equation with two parameters (diffusion and drift) k1, k2. The reader is referred to [17].

The next thing to consider are quantum fields, and in order to do so, we have to look on how
to obtain the d’Alembertian and the propagators. In [23], the d’Alembertian was introduced.
Here we follow [24], to obtain the retarded propagator for a particle on a causal set.

To get the propagator K(x, y) from an element x to y in its future, one needs to sum
over all the chains (or paths) on a causal set from element x to element y, weighted with a
particular amplitude. This is in direct analogy with quantum mechanics where the quantum
amplitudes to go from one point to another are obtained by summing over all the possible
trajectories. It is required to choose what is the analogue for the causal set, of the trajectories
that we will sum over. It can be either the chains or (more restricted) the paths. The choices
made should lead to the desired behaviour when considering causal sets faithfully embedded
in Minkowski spacetime, i.e. give rise to the propagator of the Klein-Gordon equation (with
the choices made in [24] we will get the retarded propagator). The amplitude depends on two
parameters a which is the probability that the particle “hops” once along the trajectory from
one element to another, and b which is the probability that the particle stops at an element of
the trajectory. For a chain of length n (where we have n hopes and n− 1 intermediate stops)
the amplitude would be anbn−1. For causal set in 1+1 Minkowski and 3+1 Minkowski we can
choose the values of a and b in such a way to recover the retarded Klein-Gordon propagator.
The values depend only on the mass of the particle and the volume corrseponding to each
causal set element, i.e. the density. For 1+1 dimension these values are:

a =
1

2
, b = −m2

ρ
(2)

while for 3+1 dimensions the values are:

a =

√
ρ

2π
√
6
, b = −m2

ρ
. (3)

Further details can be found in [24]. Continuing in the same line of research, in [25]
scalar quantum field on a causal set was considered, and the Feynman propagator was
computed. Of crucial importance for that work, was the use of Pauli-Jordan function [26]
∆(x) := GR(x) − GA(x) and its analogue for a causal set. Further generalisations involving
curved spacetimes could be possible.

A different direction was taken in [23] and [27]. A slowing varying (at some frame) field
ϕ(x) was considered and they used:

�dϕ(u, v) =
1

a2
(ϕ(u, v)− ϕ(u− a, v)− ϕ(u, v − a) + ϕ(u− a, v − a)) (4)

in order to define the following B operator:

Bϕ(x) =
4

a2
(−1

2
ϕ(x) +

∑
y∈N1(x)

ϕ(y) (5)

−2
∑

y∈N2(x)

ϕ(y) +
∑

y∈N3(x)

ϕ(y))

Ni(x) is the set of elements y, such that the number of elements z that satisfy y ≺ z ≺ x is
exactly i (i.e. i inclusive intervals). It has be shown (and confirmed by simulations) that this
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operator, on average, gives the value of the d’Alembertian for flat space in the suitable limit.
Further care is needed to guarantee the variations are also controlled [23].

This work is the starting point on extending the work for causal sets that faithfully embed
in curved spacetime. Using expressions for the Ricci scalar in terms of volume and proper
distance of small causal intervals [6, 28] the expression for the operator B (d’Alembertian) in
flat space changes by a term:

Bϕ(x) = (�− 1

2
R)ϕ(x) (6)

However, if we apply this expression to a constant field ϕ(x) = constant it gives an expression
of the Ricci scalar for the causal set. This leads to an important step for causal sets, which
is the derivation of an analogue of the Einstein-Hilbert action in curved spacetime called the
Benincasa-Dowker (BD) Action (see [27]). The expressions for 2 and 4 dimensions are the
following:

1

~
S(2) = N − 2N1 + 4N2 − 2N3 (7)

1

~
S(4) = N −N1 + 9N2 − 16N3 + 8N4 (8)

Ni are the i-inclusive intervals as defined above. Generalisation for arbitrary dimensions also
exist. The importance of this development, is that one can use this BD action, for constructing
quantum dynamics.

Finally, recently an alternative expression for the Ricci scalar was derived in [29], having
used the concept of neighborhood. Rather than using intervals as in the BD action, the authors
used chains (see eq. 47 of [29]). While the expressions for arbitrary dimensions were clearer
and could be used as an improved dimension estimator, this action, cannot be used directly for
quantum dynamics, since it is local and requires the concept of a neighborhood. It is difficult to
define such concept from the causal relations themselves without resorting to the background
structure.

3.3. Quantum Causal Sets
The first important observation, is that causal sets have a spacetime nature, from their
definition. A spacelike surface is simply a collection of unrelated elements, and other candidates
for this concept, such as “thickened” anti-chains (see [7]) are not intrinsic to the causal set.
It follows that a canonical quantisation of causal sets, even if possible, would contradict the
spirit of the approach. This leads, to path integral quantisations and in general in “histories”
formulations.

The mathematical aim is the assignment of a quantum amplitude to each causal set.
Alternatively, one can define a quantum measure (see [30]) on the space of all causal sets
(poscau). Interpreting the quantum measure (or the amplitudes) is complicated as already
mentioned at the end of section 2 and a histories approach ([18, 19]) should be preferred.

Technically, there are two ways to proceed. The first one, is to attempt to generate the
quantum measure, through a growth process, similarly with the CGD and is a bottom-up
approach. It is a generalisation of quantum random walks. The second is to directly assign a
weight on causal sets and this is usually done in a manner justified from continuum physics
and is thus a top-down approach.

Quantum Growth Dynamics: There are two notable differences, in the quantum case. First
of all, instead of a classical measure, we have either a quantum measure, or quantum amplitude.
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In those cases, it is technically more involved to extend the measure to the full histories space.
However, progress in this direction has been made for measurable sets of histories (see [31]).
The second issue, is that the requirement of Bell’s causality, may not be a suitable choice
for quantum causal sets. It is well known in quantum theory, that the Bell’s inequalities are
violated and thus we require a novel locality condition that allows for these violations. For the
moment, there is no widely accepted suitable generalisation of this condition.

Path Integral Approach: A first and very interesting result appeared in [32], from
consideration of the so-called 2-dimensional orders. To this end, we should stress what is
meant by a 2-dimensional order. It is a technical term for partial orders, and in general has
nothing to do with spacetime dimension. The definition is the following:

Assume that we have a set P = {e1, e2, · · ·} along with two linear orderings of this set. Then
we take the intersection of this linear orderings, which means that an element e1 ≺ ϵ2 iff e1 is
before e2 in both linear orderings. The resulting structure is a partial order that is called 2-
dimensional. Conversely,if we have a partial order that can be generated from the intersection
of 2 linear orderings it is called 2-dim order. By analogy we can define n-dimensional partial
order if it is the intersection of n linear orderings. For the special case of 2-dimensional partial
orders, it turns out that there is a correspondence with 2-dimensional spacetimes. However,
this analogy breaks down for higher dimensions.

Brightwell et al in [32] considered 2-dim orders and attempted to find what the typical
2-dim order would look like. Note, that as we have already mentioned a typical causal set is
not manifold-like but a KR order, which is the source of the “entropy” problem. In Causal
Dynamical Triangulations approach to quantum gravity, the crucial observation they made, was
that instead of summing over all possible triangulations, they restricted attention only to the
triangulations that obeyed their “causality” condition. In similar spirit, in [32] they restricted
their potential causal sets, to 2-dim partial orders. The surprising result, was that within
the 2-dim orders the major contribution comes from causal sets that are manifold-like and
moreover that are faithfully embeddable in 2-dim Minkowski. We can view this as an example
of how manifold-like behaviour (and more precisely flat) emerges from general considerations
on causal sets.

Finally, one can use expressions for the causal set analogue of the Einstein-Hilbert action,
to assign quantum amplitudes and examine the consequences. The more suitable choice, is
the BD action eqs. (7, 8). However, other attempts may also be worth exploring, such as the
expressions for the Ricci scalar found in [29] or in [33].

4. Summary and Conclusion
We introduced the causal sets which is a discrete replacement for standard continuous
spacetime. We then focused on the dynamics of the theory, which divides to three parts.
(1) The classical dynamics of causal sets, (2) the quantum dynamics of matter and fields on a
classical causal set and finally (3) the quantum dynamics of the causal set. The following major
issues concerning all three parts, were stressed. The “entropy” problem, which is that a typical
causal set is not manifold-like. The direction chosen for the dynamics i.e. whether we take a
bottom-up approach starting from concepts intrinsic to causal sets or the top-down approach
where motivation for our choices comes from standard continuous physics. The interpretation
of quantum causal sets, has the following two aspects. Constructing label-invariant questions,
and constructing an interpretation of quantum theory suitable for quantum causal sets. The
issues taken into consideration are that (a) we need a path integral approach (rather than
canonical), (b) an observer independent formulation (since nothing is outside the total causal
set) and (c) an interpretation that is valid for single, non repeatable system. The suggested
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interpretations were the co-event formulation and decoherent histories approach. Applications
of those formulations to quantum causal sets, is definitely something that needs to be pursued.

The classical dynamics presented, were bottom-up and in general stochastic [20]. Despite the
fact that we constructed the most general dynamics, four physical conditions, restricted vastly
the possible dynamics. The typical causal sets for any given choice of the parameters differs,
and while it avoids the KR causal sets it appears that does not in general give manifold-like
causal sets.

Particles moving on a given fixed causal set, move as expected with some small deviation
that appears as a drift. With reasonable choice of parameters, however, this deviation is not
observable. There are several attempts to define the d’Alembertian and using this to obtain
the propagator. This was done initially on a causal set that faithfully embeds in flat spacetime.
In [24, 25] the retarded Klein-Gordon propagator and eventually the Feynman propagator
were computed. The greatest development is, however, the Benincasa-Dowker [27] action that
applies to general causal sets that faithfully embed in curved spacetimes.

Finally, we explored the developments on the quantum dynamics of causal sets. There
are two directions, the one being the generalisation of the CGD, and the other is the direct
assignment of amplitudes to causal sets. The difficulties for the first approach were both
technical (how to extend the quantum measure) and conceptual (what replaces the Bell’s
causality condition). For the second approach, two major developments have been made. The
first was in [32] where for some sub-class of causal sets, namely the 2-dim orders, the typical
causal set not only faithfully embeds in a manifold, but it is 2-dim Minkowski. This is very
interesting, since it shows how quantum dynamics may evade the “entropy” problem. The
second development, is the existence of an analogue of the Einstein-Hilbert action in arbitrary
dimensions. One can use this, namely the BD action, to attribute weights to different causal
sets and analyse the consequences. This direction is currently the priority, and accomplishing
this, even for some special class of causal sets, would give a well defined quantum causal sets
theory.
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