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Abstract. We place tight constraints on the growth index γ by using the recent growth his-
tory results of 2dFGRS, SDSS-LRG, VIMOS-VLT deep Survey (VVDS), and WiggleZ datasets.
Utilizing a standard likelihood analysis, we find that the use of the combined growth data pro-
vided by the previous mentioned galaxy surveys, puts the most stringent constraints on the
value of the growth index. Assuming a constant growth index, we obtain that γ = 0.602±0.055
for the concordance ΛCDM expansion model. Based on the Dvali-Gabadadze-Porrati gravity
model, we find γ = 0.503 ± 0.06 which is lower, and almost 3σ away, from the theoretically
predicted value of γDGP ≃ 11/16 implying that the present growth rate data disfavor the DGP
gravity.
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1. Introduction
In the current view of cosmology it has been shown that the model that governs the accelerated
expansion of the universe is spatially flat and contains a sector of cold dark matter with some sort
of dark energy associated with a large negative pressure ( [4,14,28,31,33–36,58] and references
therein). Although the expansion of the universe is attributed to the so called dark energy, its
nature and fundamental origin are yet to be revealed. Cosmologists have unfolded two different
possible scenarios in order to describe the mechanism of acceleration. The first one involves new
fields in nature (scalar fields) and the other one involves some sort of modification of Einstein’s
General Relativity with the present accelerating stage appearing as a sort of geometric effect
(for reviews see [2, 9, 10] and references therein).

The last decade it has been proposed that measuring the growth index γ could help to
test the validity of general relativity on cosmological scales because it can provide an efficient
way to discriminate between scalar field dark energy (hereafter DE) models which admit to
general relativity, and modified gravity models. Linder & Cahn [42] have shown that there is
only a weak dependence of γ on the equation of state parameter w(z), implying that one can
separate the background expansion history, H(z), constrained by a large body of cosmological
data (SNIa, BAO, CMB), from the fluctuation growth history, given by γ. In this framework,
it was theoretically found that for those DE models which adhere to general relativity, the
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growth index γ is well approximated by γ ≃ 3(w−1)
6w−5 (see [42, 47, 55, 65]), which reduces to

γΛ ≃ 6/11 for the traditional ΛCDM cosmology w(z) = −1. On the other hand, in the case of the
braneworld model of Dvali-Gabadadze-Porrati [21] (hereafter DGP) the growth index becomes
γDGP ≃ 11/16 (see also [22,42]), while for some f(R) gravity models we have γ ≃ 0.41−0.21 for
Ωm0 = 0.27 [23, 45]. Indirect methods to determine γ have also been proposed (mostly using a
constant γ), based either on the observed growth rate of clustering [20,25,26,47,50,54] providing
a wide range of γ values γ = (0.58− 0.67)+0.11 +0.20

−0.11 −0.17, or on massive galaxy clusters [64] and [51]

with the latter study providing γ = 0.42+0.20
−0.16, or even on the weak gravitational lensing [12].

Gaztanaga et al. performed a cross-correlation analysis between probes of weak gravitational
lensing and redshift space distortions and found no evidence for deviations from general relativity.

The scope of the present study is to place constraints on the growth index using a single
cosmologically relevant experiment, i.e., that of the recently derived growth data of the 2dFGRS,
SDSS-LRG, VVDS, and WiggleZ galaxy surveys. We use two reference expansion models,
namely flat ΛCDM and DGP, respectively, for the background evolution. The interesting aspect
of the latter scenarios is that the corresponding functional forms of the Hubble parameters are
affected only by one free parameter, that of the dimensionless matter density at the present time
Ωm0. The structure of the article is as follows. In section 2, we briefly discuss the background
cosmological equations. The theoretical elements of the growth index are presented in section
3. In section 4 we briefly discuss the growth data. In section 5, we perform a likelihood analysis
in order to constrain the growth index model free parameters. Finally, the main conclusions are
summarized in section 6.

2. Theoretical approach
In this section we briefly discuss the main points of the background evolution for homogeneous
and isotropic flat cosmologies, driven by non relativistic matter and an exotic fluid (DE models)
with equation of state (hereafter EoS), PDE = w(a)ρDE . In this case the first Friedmann
equation:

H2(a)

H2
0

≡ E2(a) = Ωm0a
−3 +ΩDE,0e

3
∫ 1
a dlny[1+w(y)], (1)

where a(z) = 1/(1+ z) is the scale factor of the universe, w(a) is the EoS parameter, Ωm0 is the
dimensionless matter density at the present time and ΩDE,0 = 1−Ωm0 denotes the DE density
parameter.

We can write the EoS parameter in terms of E(a) [30,53] using the Friedmann equations:

w(a) =
−1− 2

3a
dlnE
da

1− Ωm(a)
(2)

where

Ωm(a) =
Ωm0a

−3

E2(a)
. (3)

Differentiating the latter and taking into account eq. (2) we obtain:

dΩm

da
=

3

a
w(a)Ωm(a) [1− Ωm(a)] . (4)

The important clue about this form of the DE EoS parameter is that includes our ignorance
regarding the physical mechanism powering the late time cosmic acceleration since the exact
nature of the DE is unknown. It is also worth noticing that for w(a) = −1 we have the
concordance ΛCDM model.
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Interestingly, the above method can be generalized to the context of modified gravity (see
[38,40]). Indeed, instead of using the exact Hubble flow through a modification of the Friedmann
equation, one may consider an equivalent Hubble flow somewhat mimicking eq.(1). The
ingredient here is that the accelerating expansion can be attributed to a kind of “geometrical” DE
contribution. Now, due to the fact that the matter density (baryonic+dark) cannot accelerate
the cosmic expansion, it is useful to utilize the following parametrization [38,40]:

E2(a) =
H2(a)

H2
0

= Ωm0a
−3 +∆H2. (5)

It becomes clear that any modification to the Friedmann equation of general relativity is included
in the last term of the above expression. Now, using eqs. (2) and (5), one can derive the effective
(“geometrical”) dark energy EoS parameter:

w(a) = −1− 1

3

dln∆H2

dlna
= −1− 1

3

a

∆H

dlnH

da
. (6)

In the context of a flat DGP cosmological model, the “accelerated” expansion of the universe
can be explained by a modification of the gravitational interaction in which gravity itself becomes
weak at very large distances (close to the Hubble scale) due to the fact that our four dimensional
brane survives into an extra dimensional manifold (see [16] and references therein). The quantity
∆H2 is given by:

∆H2 = 2Ωbw + 2
√

Ωbw

√
Ωm0a−3 +Ωbw (7)

where Ωbw = (1−Ωm0)
2/4. Interestingly, the quantity ∆H2 contains only one free partameter,

Ωm0. From eq.(6), one can check that the geometrical (effective) DE equation of state parameter
reduces to:

w(a) = − 1

1 + Ωm(a)
. (8)

In this model, due to its gravity nature, the effective Newton’s parameter Geff is not any more
the usual constant GN but it takes the following form [44]:

Geff(a) = GNQ(a) Q(a) =
2 + 4Ω2

m(a)

3 + 3Ω2
m(a)

. (9)

3. The linear growth rate
We now discuss the basic equation which governs the evolution of the matter perturbations
within the framework of any DE model (scalar or geometrical). It is very important to notice
that at the sub-Hubble scales the DE component is expected to be smooth and, thus, one can
use perturbations only on the matter component of the cosmic fluid [13]. In particular, following
the notations of [17,37,42,44,57,61,62], we can derive the well known scale independent equation
of the linear matter overdensity δm ≡ δρm/ρm:

δ̈m + 2Hδ̇m = 4πGeffρmδm (10)

a solution of which is δm(t) ∝ D(t), with D(t) denoting the linear growing mode (usually scaled
to unity at the present time) For the scalar field DE models [Geff = GN , Q(a) = 1], the above
equation reduces to the usual time evolution equation for the mass density contrast [48], while
in the case of modified gravity models (see [23, 42, 44, 61]), we have Geff ̸= GN (or Q(a) ̸= 1).
Transforming equation (10) from t to a ( d

dt = H d
d ln a), we simply derive the evolution equation

of the growth factor D(a)

a2

D

d2D

da2
+

(
3 + a

dlnE

da

)
a

D

dD

da
=

3

2
Ωm(a)Q(a) . (11)
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Table 1. The growth data. The correspondence of the columns is as follows: index, redshift,
observed growth rate and references. In the final column, one can find various symbols of the
data appearing in Fig.2.
Index z Aobs Refs. Symbols

1 0.17 0.510± 0.060 Song & Percival 2009; Percival et al. 2004 open circles
2 0.35 0.440± 0.050 Song & Percival 2009; Tegmark et al. 2006 open circles
3 0.55 0.750± 0.180 Song & Percival 2009; Guzzo et al. 2008 open circles
4 0.25 0.351± 0.058 Samushia et al. 2012 open triangles
5 0.37 0.460± 0.038 Samushia et al. 2012 open triangles
6 0.22 0.420± 0.070 Blake et al. 2011 solid circles
7 0.41 0.450± 0.040 Blake et al. 2011 solid circles
8 0.60 0.430± 0.040 Blake et al. 2011 solid circles
9 0.78 0.380± 0.040 Blake et al. 2011 solid circles

Notice that solving eq.(10) for the concordance Λ cosmology1, we derive the well known
perturbation growth factor (see [48]):

D(z) =
5Ωm0E(z)

2

∫ +∞

z

(1 + u)du

E3(u)
. (12)

3.1. The evolution of the growth index
For any type of DE, an efficient parametrization of the matter perturbations is based on the
growth rate of clustering [48]:

f(a) =
d lnD

d ln a
≃ Ωγ

m(a) (13)

which implies:

D(a) = exp

[∫ a

1

Ω
γ(x)
m (x)

x
dx

]
(14)

where γ is the so called growth index (see [40,42,44,47,65]).
Combining eq.(13), eq.(11) and eq.(2), we find that:

a
df

da
+ f2 +X(a)f =

3

2
Ωm(a)Q(a) , (15)

where

X(a) =
1

2
− 3

2
w(a) [1− Ωm(a)] . (16)

If we change variables in eq.(15) from a to redshift [ d
da = −(1 + z)−2 d

dz ] and utilizing eqs.(13)
and (4), then we can derive the evolution equation of the growth index γ = γ(z) (see also [50]):

−(1 + z)γ′ln(Ωm) + Ωγ
m + 3w(1− Ωm)(γ − 1

2
) +

1

2

=
3

2
QΩ1−γ

m , (17)

1 For the usual ΛCDM cosmological model we have w(a) = −1, ΩΛ(a) = 1− Ωm(a) and Q(a) = 1.
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Figure 1. Left Panel: The variance ∆χ2 = χ2 − χ2
min around the best-fit γ value for the Λ

cosmology. Note that the cross corresponds to (γΛ,∆χ2
1σ) = ( 6

11 , 1). Right Panel: The statistical

results in the case of the DGP model. The corresponding cross is (γDGP ,∆χ2
3σ) = (1116 , 9).

Evaluating eq.(17) at z = 0, we have:

−γ′(0)ln(Ωm0) + Ω
γ(0)
m0 + 3w0(1− Ωm0)[γ(0)−

1

2
] +

1

2

=
3

2
Q0Ω

1−γ(0)
m0 , (18)

where Q0 = Q(z = 0) and w0 = w(z = 0).
It is interesting to mention here that the last few years there have been many theoretical

speculations concerning the functional form of the growth index and indeed various candidates
have been proposed in the literature. In this work, we decide to phenomenologically treat the
functional form of the growth index γ(z)=constant.

4. The Growth data
The growth data that we utilize in this work, is based on 2dF, SDSS, and WiggleZ galaxy
surveys, for which their combination parameter of the growth rate of structure, f(z), and the
redshift-dependent rms fluctuations of the linear density field, σ8(z), is available as a function
of redshift, f(z)σ8(z). The fσ8 ≡ A estimator is almost a model-independent way of expressing
the observed growth history of the universe [56]. In particular, we use:

• The 2dF [49], SDSS-LRG [59] and VVDS [26], based growth results as collected by Song &
Percival [56]. This sample contains 3 entries.

• The SDSS (DR7) results (2 entries) of Samushia et al. [54], based on spectroscopic data of
∼106000 LRGs in the redshift bin 0.16 < z < 0.44.

• The WiggleZ results of Blake et al. [8], based on spectroscopic data of ∼152000 galaxies in
the redshift bin 0.1 < z < 0.9. This dataset contains 4 entries.

In Table 1 we list the precise numerical values of the data points with the corresponding errors
bars.

5. Fitting Models to the Data
In order to quantify the free parameters of the growth index, we perform a standard χ2

minimization procedure between N = 9 growth data measurements, Aobs = fobs(z)σ8,obs(z),
with the growth values predicted by the models at the corresponding redshifts, A(p, z) =
f(p, z)σ8(p, z) with σ8(p, z) = σ8,0D(p, z). The vector p represents the free parameters of
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Figure 2. Comparison of the observed and theoretical evolution of the growth rate A(z) =
f(z)σ8(z). The solid and dashed lines correspond to ΛCDM (γ = 0.602) and DGP (γ = 0.503)
expansion models respectively. The different growth datasets are represented by different
symbols (see Table 1 for definitions).

the model, depending on the model. In particular, the essential free parameters that enter in
the statistical vector are: p ≡ (γ,Ωm0). We will restrict our present analysis to the choice
(Ωm0, σ8,0) = (0.273, 0.811) provided by WMAP7 [34]2. Note that we sample γ ∈ [0.1, 1.3] in
steps of 0.001 and Ωm0 ∈ [0.1, 1] in steps of 0.001. The χ2 function3 is defined as:

χ2(zi|p) =
N∑
i=1

[
Aobs(zi)−A(p, zi)

σi

]2
(19)

where σi is the observed growth rate uncertainty. A numerical summary of the statistical
analysis is shown in Table 2. In general, we find that our results are in agreement, within 1σ
uncertainties, with previous studies [3, 19,20,22,25,47].

In the left panel of Fig. 1, we show the variation of ∆χ2 = χ2(γ) − χ2
min(γ) around the

best-fit γ value for the concordance Λ cosmology. We find that the likelihood function of the
growth data peaks at γ = 0.602±0.055 with χ2

min ≃ 7.06 for 8 degrees of freedom. Alternatively,
considering the ΛCDM theoretical value of γ (≡ 6/11) and minimizing with respect to Ωm0, we
find Ωm0 = 0.243± 0.034 (see also [47]) with χ2

min/dof ≃ 7.37/8. Our growth index results are
in agreement within 1σ errors, to those of Samushia et al. [54] who found γ = 0.584 ± 0.112.
However, our best-fit value is somewhat greater and almost 1σ (∆χ2

1σ ≃ 1) away, from the
theoretically predicted value of γΛ ≃ 6/11 (see cross in the left panel of Fig. 1). It is interesting to
mention here that such a small discrepancy between the theoretical ΛCDM and observationally
fitted value of γ has also been found by other authors. For example, Di Porto & Amendola [18]
obtained γ = 0.60+0.40

−0.30, Gong [25] measured γ = 0.64+0.17
−0.15 while Nesseris & Perivolaropoulos [47]

found γ = 0.67+0.20
−0.17. Recently, Basilakos [3] using a similar analysis shows that γ = 0.616+0.088

−0.083.
Concerning the DGP model (see the right panel of Fig. 1), the best-fit value is γ = 0.503±0.06

with χ2
min/dof ≃ 5.30/8. If we fix the value of γ(≡ 11/16) to that predicted by the DGP

model we find a quite large value of the dimensionless matter density at the present time,
Ωm0 = 0.380±0.042 with χ2

min/dof ≃ 5.38/8. It becomes clear that the best-fit γ value is much
lower and almost 3σ (∆χ2

3σ ≃ 9) away, from γDGP ≃ 11/16 (see cross in the right panel of Fig.
1) implying that the growth data disfavor the DGP gravity. We would like to stress here that the

2 For the DGP model, Gong [25] found Ωm0 = 0.278.
3 Likelihoods are normalized to their maximum values. In the present analysis, we always report 1σ uncertainties
on the fitted parameters. Note that the uncertainty of the fitted parameters will be estimated, in the case of more
than one such parameters, by marginalizing one with respect to the others.
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Table 2. Statistical results for the combined growth data (see Table I): The 1st column indicates
the expansion model, the 2nd column corresponds to the best values of γ for each cosmological
model and the third column presents the reduced χ2

min.
Expansion Model γ χ2

min/dof

ΛCDM 0.602± 0.055 7.10/7
DGP 0.503± 0.060 5.32/7

above observational DGP constraints are in excellent agreement with previous studies. Indeed,
Gong [25] and Dosset et al. [20] found γ = 0.55+0.14

−0.13 and γ = 0.483+0.113
−0.088, respectively. In Fig.

2, we plot the measured Aobs(z) with the estimated growth rate function, A(z) = f(z)σ8(z) [see
ΛCDM - solid line and DGP - dashed line].

The goal from the above discussion is to give the reader the opportunity to appreciate the
relative strength and precision of the different methods used in order to constrain the growth
index. It becomes evident that with the combined high-precision fσ8 growth rate data of Song &
Percival [56], Samushia et al. [54] and Blake et al. [8], we have achieved to place quite stringent
constraints on γ. Furthermore, notice that using the cosmological parameters (Ωm, σ8) from
Planck [1], our results remain almost the same within 1σ errors.

Finally, as we have already mentioned in Table 2, one may see a more compact presentation
of our statistical results.

6. Conclusions
It is well known that the so called growth index γ plays a key role in cosmological studies because
it can be used as a useful tool in order to test Einstein’s general relativity on cosmological
scales. We have utilized the recent growth rate data provided by the 2dFGRS, SDSS-LRG,
VVDS, and WiggleZ galaxy surveys, in order to constraint the growth index. Performing
a likelihood analysis for various γ(z) parametrizations, we argue that the use of the above
combined growth data places the most stringent constraints on the value of the growth index.
Overall, considering a ΛCDM expansion model, we find that the observed growth index is in
agreement, within 1σ errors, with the theoretically predicted value of γΛ ≃ 6/11. In contrast,
for the DGP expansion model we find that the measured growth index is almost 3σ away from
the corresponding theoretical value γDGP ≃ 11/16 which implies that the present growth data
can not accomodate the DGP gravity model.
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