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Abstract. We present a sketch of the proof of future stability for reflection symmetric solutions
of the Einstein-Vlasov system of Bianchi Type VI0 with an extended introduction to motivate
the interest for the Vlasov equation in the context of General Relativity.

1. Introduction
Cosmology describes the dynamics of the Universe as a whole. These dynamics can only be
understood in terms of the theory of general relativity which was established by Albert Einstein
in 1915. This theory is mathematically complicated enough to have given rise to a research field
on its own, the area of Mathematical General Relativity.

A starting point to understand general models are the homogeneous models. In general, the
focus has been on the fluid model since it appears (theoretically) relatively natural when dealing
with isotropic universes and from observations we also know that the Universe is almost isotropic.
However, in order to have a deeper understanding of the dynamics one should go beyond the
study of isotropic universes. General statements may vary then depending on the choice of the
matter model.

We will deal with the future asymptotics of some homogeneous cosmological models within
the so called Bianchi class A while the matter is described via an ensemble of free falling particles
also called collisionless matter. The late-time behaviour of Bianchi spacetimes with a non-tilted
fluid is well understood. In particular, all non-tilted perfect fluid orthogonal Bianchi models
except Type IX with a linear equation of state where 0 < γ < 2

3 , are future asymptotic to the
flat Friedmann-Lemı̂tre model. Note the restriction on γ here. One cannot expect isotropization
for most of the Bianchi models. However, there are two important “conjectures” in the present
work:

(i) The spacetimes considered tend to special (self-similar) solutions
(ii) For expanding models the dispersion of the velocities of the particles decays

This second “conjecture” means that asymptotically there is a dust-like behaviour for
collisionless matter which is the matter model used here. The Einstein-Vlasov system remains
a system of partial differential equations (PDE’s) even if one assumes spatial homogeneity. The
reason is that although the distribution function written in a suitable frame will not depend on
the spatial point, the dependence with respect to the momenta remains. However, sometimes a
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reduction to a system of ordinary differential equations is possible due to additional symmetry
assumptions. This is no longer possible if one drops some of these additional symmetries. Thus, if
one wants to generalize the results obtained until now the theory of finite dimensional dynamical
systems is not enough. Most of these results rely on the theory of dynamical systems. Thus, one
might be tempted to use techniques from the theory of infinite-dimensional dynamical systems.
The first important difficulty would be to choose the suitable (weighted) norm. Another difficulty
is that important theorems which have been used for the finite-dimensional case cannot be applied
here. All this may work, but this is not the approach taken here.

Here, the main tool used is a bootstrap argument which is often used in non-linear PDE’s.
For the reflection symmetric Bianchi Type VI0 we have been able to show that the late-time
behaviour remains the same if the LRS condition is dropped assuming small data. We will show
that the spacetime will tend to solutions which are even more symmetric. In the case of Bianchi
Type VI0 there cannot be an LRS condition, however it is compatible with an additional discrete
symmetry. The analysis of the asymptotics shows that the Bianchi Type VI0 spacetimes tend
to this special class. Note that for Bianchi Type VI0 there is no corresponding LRS/previous
result.

All the results show that the dust model usually assumed in observational cosmology in
the ’matter-dominated’ Era is robust. Another way of saying the same is that asymptotically
collisionless matter is well approximated by the dust system.

2. Relativistic kinetic theory
We will consider collisionless matter as our matter model. Before introducing it more formally
we want first to give the motivation for the restriction to the aforesaid kind of matter instead of
considering the full Boltzmann equation.

First of all it is of course an enormous simplifying assumption. One assumes by modelling
a galaxy as a particle that in a cosmological context the internal structure of the galaxy is
irrelevant.

An important physical argument in favour of considering the collisionless model is that
collisions between galaxies are not common and even if galaxies fly through each other not
so many collisions between stars happen as one might expect. Further, in stellar dynamics
collisionless matter is often used since collisions between stars are very unlikely. Actually this
led Eddington to state:

“The apparent analogy with the kinetic theory of gases is rejected altogether, and it
is taken as a fundamental principle that the stars describe paths under the general
attraction of the stellar system without interfering with one another ”(p. 254 of [1];
italics from Eddington)

Two pages later he continues:

“A regular progression may be traced through rigid dynamics, hydrodynamics, gas-
dynamics to stellar dynamics. In the first all the particles move in a connected manner;
in the second there is continuity between the motions of contiguous particles ; in the
third the adjacent particles act on one another by collision, so that, although there is no
mathematical continuity, a kind of physical continuity remains; in the last the adjacent
particles are entirely independent.”(p. 256 of [1])

Later, Jeans in the study of stellar dynamics referring to the collisionless Boltzmann equation
writes:

“This is the differential equation which must be satisfied by the distribution function f
in every problem of stellar dynamics.”(p. 230 of [2])

and on the same page as a footnote:
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“The student of the Kinetic Theory will recognise that it is simply Boltzmann’s well-
known equation with the collisions left out.”

However, this equation is usually named after Vlasov [3], in particular in the context of
mathematical cosmology. Vlasov discovered in the context of plasma physics that pair collision
terms do not describe correctly the plasma dynamics and also that these terms are not formally
applicable since kinetic terms diverge. His point of view was that only the collective behaviour,
i.e. the electromagnetic field created by the charged particles, explains the dynamics of the
individual particles.

Maybe the emphasis on the difference of taking one or the other point of view has been the
reason that the Vlasov equation is named after him not only in the context of plasma physics.
Another reason maybe that although Boltzmann himself assumed that the particles interact only
through:

• very long range forces which can be approximated by mean fields
• or very short range forces such as hard core interactions whose effect can be approximated

by instantaneous collisions,

in practice the long range forces were often neglected since, for instance, the gravitational force
is very weak.

Another fact which has attracted attention to the case of collisionless matter is the discovery
that in analyzing the initial singularity of the Einstein-dust equations there arose singularities
which are unphysical and related not to gravity but to the chosen matter model. One has seen
that these problems do not occur when using collisionless matter as the matter model. Finally,
the Vlasov equation is also used in astrophysics to model dark matter, where the particles are
now elementary particles.

Of course, at some point it is of interest to know what happens if one includes collisions
between the particles. A recent work on the Cauchy problem of the Einstein-Boltzmann system
can be found in [4].

2.1. The Einstein-Vlasov system
A cosmological model represents a universe at a certain averaging scale. It is described via a
Lorentzian metric gαβ (we will use the signature – + + +) on a manifold M and a family of
fundamental observers. The interaction between the geometry and the matter is described by
the Einstein field equations (we use geometrized units, i.e. the gravitational constant G and the
speed of light in vacuum c are set equal to one):

Gαβ = 8πTαβ,

where Gαβ is the Einstein tensor and Tαβ is the energy-momentum tensor. For the matter model
we will take the point of view of kinetic theory. The Einstein summation convention to which
repeated indices are to be summed over is used. Latin indices run from one to three and Greek
ones from zero to three.

Consider a particle with non-zero unit rest mass moving under the influence of the
gravitational field. The mean field will be described now by the metric and the components
of the metric connection. The wordline xα of a particle is a timelike curve in spacetime. The
unit future-pointing tangent vector to this curve is the 4-velocity vα and pα = mvα is the 4-
momentum of the particle. Let Tx be the tangent space at a point xα in the spacetime M , then
we define the phase space P1 for particles of unit mass:

P1 = {(xα, pα) : xα ∈M, pα ∈ Tx, pαpα = −1, p0 > 0},
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which we will call the mass shell. The collection of particles (galaxies or clusters of galaxies)
will be described (statistically) by a non-negative real valued distribution function f(xα, pα) on
P1. This function represents the density of particles at a given spacetime point with given four-
momentum. A free particle travels along a geodesic. Consider now a future-directed timelike
geodesic parametrized by proper time s. The tangent vector is then at any time future-pointing
unit timelike. Thus, the geodesic has a natural lift to a curve on P1 by taking its position and
tangent vector. The equations of motion thus define a flow on P1 which is generated by a vector
field L called geodesic spray or Liouville operator. Using the geodesic equations the restriction
of the Liouville operator to the mass shell has the following form:

L = pα
∂

∂xα
− Γaβγp

βpγ
∂

∂pa
.

This operator is sometimes also called geodesic spray. Between collisions the particles follow
geodesics. We will consider the collisionless case which is described via the Vlasov equation
L(f) = 0.

2.2. Energy momentum tensor and characteristics
The unknowns of our system are a 4-manifold M , a Lorentz metric gαβ on this manifold and the
distribution function f on the mass shell P1 defined by the metric. We have the Vlasov equation
defined by the metric for the distribution function and the Einstein field equations. It remains
to define the energy-momentum tensor Tαβ in terms of the distribution and the metric. Now
considering p0 as a dependent variable we denote the induced volume of the mass shell considered
as a hypersurface in the tangent space at that point by $. Now we define the energy momentum
tensor as follows:

Tαβ =

∫
f(xα, pa)pαpβ$.

One can show that Tαβ is divergence-free and thus it is compatible with the Einstein field
equations. For collisionless matter all the energy conditions hold. The Vlasov equation in a fixed
spacetime can be solved by the method of characteristics:

dXa

ds
= P a;

dP a

ds
= −ΓaβγP

βP γ .

Let Xa(s, xα, pa), P a(s, xα, pa) be the unique solution of that equation with initial conditions
Xa(t, xα, pa) = xa and P a(t, xα, pa) = pa. Then the solution of the Vlasov equation can be
written as:

f(xα, pa) = f0(X
a(0, xα, pa), P a(0, xα, pa)),

where f0 is the restriction of f to the hypersurface t = 0. It follows that if f0 is bounded the
same is true for f . We will assume that f has compact support in momentum space for each
fixed t. This property holds if the initial datum f0 has compact support and if each hypersurface
t = t0 is a Cauchy hypersurface. In particular, for the case we will deal with, the spacetime is
future complete (theorem 2.1 of [5]).

3. Bianchi spacetimes
Bianchi spacetimes are defined as follows:

Definition 1. A Bianchi spacetime is defined to be a spatially homogeneous spacetime whose
isometry group possesses a three-dimensional subgroup G that acts simply transitively on the
spacelike orbits.
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The only Bianchi spacetimes which admit a compact Cauchy hypersurface are Bianchi Types
I and IX. In order to be not too restrictive we will consider locally spatially homogeneous
spacetimes. Also, we will take the metric approach. If Wa denote the 1-forms dual to the
frame vectors Ea the metric of a Bianchi spacetime takes the form:

4g = −dt2 + gab(t)W
aWb, (1)

where gab (and all other tensors) on the Lie group G will be described in terms of the frame
components of the left invariant frame. A dot above a letter will denote a derivative with respect
to the cosmological time t. There are different projections of the energy momentum tensor which
are important: ρ = T 00, ja = T 0

a and Sab = Tab where ρ is the energy density and ja is the matter
current. Let us also use the notation S = gabSab.

3.1. Time origin choice and new variables
With the 3+1 formulation our initial data are (gij(t0), kij(t0), f(t0)), i.e. a Riemannian metric,
a second fundamental form and the distribution function of the Vlasov equation, respectively, on
a three-dimensional manifold S(t0). This is the initial data set at t = t0 for the Einstein-Vlasov
system. We assume that k = gabkab < 0 for all time which enables us to set without loss of
generality t0 = −2/k(t0). The reason for this choice will become clear later and is of a technical
nature. We can decompose the second fundamental form introducing σab as the trace-free part:

kab = σab −Hgab. (2)

Using the Hubble parameter H = −1
3k we define:

Σb
a =

σba
H

; Σ+ = −1

2
(Σ2

2 + Σ3
3); Σ− = − 1

2
√

3
(Σ2

2 − Σ3
3)

Ω = 8πρ/3H2; q = −1− Ḣ

H2
;
dτ

dt
= H.

The time variable τ is dimensionless. Since we use a left-invariant frame f we can express the
Vlasov equation as follows

∂f

∂t
+ (p0)−1Cdbap

bpd
∂f

∂pa
= 0. (3)

For the Vlasov equation we obtain by use of (7) for the Bianchi Type VI0:

∂f

∂t
+ (p0)−1[p2(p

3 ∂f

∂p1
− p1 ∂f

∂p3
) + p3(p

2 ∂f

∂p1
− p1 ∂f

∂p2
)] = 0.

From (3) it is also possible to define the characteristic curve Va:

dVa
dt

= (V 0)−1CdbaV
bVd (4)

for each Vi(t̄) = v̄i given t̄. Note that if we define V = gijViVj due to the antisymmetry of the
structure constants we have with (4):

dV

dt
=

d

dt
(gij)ViVj . (5)
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4. Bianchi class A spacetimes
Definition 2. A Bianchi class A spacetime is a Bianchi spacetime whose three-dimensional Lie
algebra has traceless structure constants, i.e. Caba = 0.

In this case there is a unique symmetric matrix with components νij such that the structure
constants can be written as follows:

Cabc = εbcdν
da. (6)

Bianchi Type VI0 is of class A and ν = (0, 1,−1). We see that the structure constants in the
case of Bianchi Type VI0 are:

C2
31 = 1 = −C2

13, C3
21 = 1 = −C3

12. (7)

4.1. Reflection symmetry and the equations for diagonal Bianchi Type VI0
We will restrict ourselves to the diagonal case assuming an additional symmetry, namely the
reflection symmetry. In this case we have:

f(t, p1, p2, p3) = f(t,−p1,−p2, p3) = f(t, p1,−p2,−p3).

One can see that the energy-momentum tensor is then diagonal. Thus, if the metric and
the second fundamental form are diagonal initially, they will remain diagonal in the reflection
symmetric case. This symmetry implies in particular that there is no matter current, which
means that there is no “tilt”. Let us define:

ni = νi

√
gii

gjjgkk
,

where (ijk) denotes a cyclic permutation of (123) and the Einstein summation convention is
suspended. Define also

Ni =
ni
H
.

The constraint equation is:

Σ2
+ + Σ2

− = 1− Ω− 1

12
(N2 −N3)

2

and one obtains the evolution equation

∂t(H
−1) =

3

2
− 1

24
(N2 −N3)

2 +
3

2
(Σ2

+ + Σ2
−) +

4πS

3H2
. (8)

The evolution equations for the other variables are:

Σ̇+ = H[−1

6
(N2 −N3)

2 − Σ+(3 +
Ḣ

H2
) +

4π

3H2
(S2

2 + S3
3 − 2S1

1)] (9)

Σ̇− = H[
N2

3 −N2
2

2
√

3
− (3 +

Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

] (10)

Ṅ2 = −N2H(−2Σ+ − 2
√

3Σ− + 1 +
Ḣ

H2
) (11)

Ṅ3 = −N3H(−2Σ+ + 2
√

3Σ− + 1 +
Ḣ

H2
). (12)
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In the case of Bianchi Type VI0 there is a dust solution with diagonal metric discovered by Ellis
and MacCallum:

gEM = diag(t2, t1, t1).

Here, the values of the introduced variables are:

Σ+ = −1

4
; Σ− = 0; N1 = 0; N2 = −N3 =

3

4
; Ω =

3

4
.

5. The bootstrap argument
Before coming to the bootstrap argument and in order to have a certain intuition for the bootstrap
assumptions, let us consider the linearization in the dust case. For S = 0 the linearization gives
us the expected estimates and, using the Ellis-MacCallum solution, we arrive at a plausible
estimate of P . A first task is to find the suitable bootstrap assumptions. We choose a slightly
slower decay for the anisotropy and the curvature variables than in the linearized cases with
the hope that, using the central equations, we will be able to obtain the same decay as in the
linearized case. For the estimate of P we start with a slower decay than the one obtained in the
previous section as well. The assumption of small data here is in the sense that our solutions
are not “far away” from our special solution. In general, in order to improve an estimate, the
corresponding evolution equation will be integrated. The assumptions made exclude the vacuum
case, since the values of Ω due to the constraint equation are near the corresponding values of Ω
of the special solution, and thus they are far from being zero.

5.1. Bootstrap assumptions

|Σ+ +
1

4
| ≤ A+(1 + t)−

3
8 ,

|Σ−| ≤ A−(1 + t)−
3
8 ,

|N2 −
3

4
| ≤ Ac1(1 + t)−

3
8 ,

|N3 +
3

4
| ≤ Ac2(1 + t)−

3
8 ,

P ≤ Am(1 + t)−
1
3 .

5.2. Estimate of the mean curvature
The first variable we estimate is the trace of the second fundamental form or equivalently the
Hubble variable. By integrating (8) and since t0 = 2

3H
−1(t0) (this choice was made in section

(3.1)), one obtains from the different bootstrap assumptions for the Hubble variable :

H =
2

3
t−1(1 +O(ε2/3t

− 3
8 )) . (13)

5.3. Estimate of the metric
Considering the components g22 and g33 one shows that:

d

dt
(t−γ ḡab) = t−γ−1ḡab(−γ +

p

q
+
ġab

gab
t) ≤ −ηt−γ−1ḡab,
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with η positive by use of the bootstrap assumptions and choosing γ in a suitable way which
implies that:

gab(t) ≤ t
−γ+ p

q

0 gab(t0)t
− p

q
+γ
. (14)

We have with (13) for the components g22 and g33:

η = γ +
4

3
(1 +O(ε2/3t

− 3
8 ))(1 + Σ+ ±

√
3Σ−)− p

q
,

4

3
(1 + Σ+)− p

q
= O(A+(1 + t)−

3
8 ),

which enables us to choose γ in such a way that η is positive. Summarizing, this means that
asymptotically up to a positive constant which depends only on t0 the components (and their
inverses) of the metrics gV I0 for Bianchi Type VI0 have the same decay up to an ε as the
corresponding components of the Ellis-MacCallum solution respectively.

5.4. Estimate of P
It follows from (4) and using (5):

V̇ = ġbfVbVf = 2H(Σb
a − δba)gafVbVf = 2H(Σ1

1g
11V 2

1 + Σ2
2g

22V 2
2 + Σ3

3g
33V 2

3 )− 2HV.

The maximum of Σ1
1, Σ2

2 and Σ3
3 is equal to 1

4 +O(t−
3
8 ). Thus, using now the estimate of H and

integrating :

V ≤ V (t0)(t/t0)
−1+ε

from which it follows choosing P (t0) ≤ Amt
1
2
−ε

0 :

P ≤ Amt−
1
2
+ε

which is an improvement of the bootstrap assumption and which has a consequence that:

S

H2
≤ Ct−1+ε . (15)

5.5. Closing the bootstrap argument
What remains are the estimates for Σ+, Σ−, N2 andN3. In terms of the transformed linearization

Σ̂+

Σ̂−
N̂2

N̂3

 = M−1VI0


Σ̃+

Σ̃−
Ñ2

Ñ3


and using the time variable τ we have:

Σ̂+

Σ̂−
N̂2

N̂3


′

= −3

4


1 −

√
3 0 0√

3 1 0 0
0 0 1 −1
0 0 1 1




Σ̂+

Σ̂−
N̂2

N̂3

 +O(A2
me
−τ )


1
1
1
1

 .
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We arrive at

d

dτ
[log(Σ̂2

+ + Σ̂2
−)] ≤ −3

2
+ εe(−

1
16
−ξ)τ

and we obtain a similar expression for N2 and N3 such that in the end we obtain the desired
estimates.

5.6. Results of the bootstrap argument
Let us summarize the results obtained in the following proposition:

Proposition 1. Consider any C∞ solution of the Einstein-Vlasov system with reflection Bianchi
Type VI0 symmetry and with C∞ initial data. Assume that |Σ+(t0) + 1

4 |, |Σ−(t0)|, |N2(t0)− 3
4 |,

|N3(t0) + 3
4 | and P (t0) are sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 +O(t−

1
2
+ε)),

Σ+ +
1

4
= O(t−

1
2
+ε),

Σ− = O(t−
1
2
+ε),

N2 −
3

4
= O(t−

1
2
+ε),

N3 +
3

4
= O(t−

1
2
+ε),

P (t) = O(t−
1
2
+ε).

In the next section we will improve the estimates so that we can get rid of ε. However, the
results stated in this section represent in fact the core of our results.

6. Main results
6.1. Arzela-Ascoli
We want to use the Arzela-Ascoli theorem. All relevant variables and their derivatives are
uniformly bounded. The only variable which is not obviously bounded is the derivative of S.
If we can bound the derivative of S then the second derivatives of Σ−, Σ+, N2, N3 and H are
also bounded. The only term of the time derivative of S which could cause problems is the
time derivative of the distribution function, but it can be handled with the Vlasov equation
and through integration by parts . We obtain a term which can be bounded by S. Let {tn}
be a sequence tending to infinity and let (Σ−)n(t) = Σ−(t + tn), (Σ+)n(t) = Σ+(t + tn),
(N2)n(t) = N2(t + tn), (N3)n(t) = N3(t + tn), Hn(t) = H(t + tn) and Sn(t) = S(t + tn).
Using the bounds, the Arzela-Ascoli theorem can be applied. This implies that, after passing to
a subsequence, (Σ−)n, (Σ+)n, (N2)n, (N3)n, Hn and Sn converge uniformly on compact sets to
a limit (Σ−)∞, (Σ+)∞, (N2)∞, (N3)∞, H∞ and S∞ respectively. The first derivative of these
variables converges to the corresponding derivative of the limits since we have been able to bound
the derivative of S in the last section. Going to this limit it is easy to see that the variable D∞ is
zero and consequently H∞ = 2

3 t
−1. Thus, we obtain the optimal decay rates for the metric and

for its derivative. This implies that we obtain the optimal decay rates for P . Since S/H2 is zero
asymptotically, we obtain the same estimates for Σ−, Σ+, N2 and N3 as in the Einstein-dust
case. Introducing these estimates in (8), we also obtain the optimal estimate for H.
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6.2. Optimal estimates
We can summarize the results:

Theorem 1. Consider any C∞ solution of the Einstein-Vlasov system with reflection Bianchi
Type VI0 symmetry and with C∞ initial data. Assume that |Σ+(t0) + 1

4 |, |Σ−(t0)|, |N2(t0)− 3
4 |,

|N3(t0) + 3
4 | and P (t0) are sufficiently small. Then at late times the following estimates hold:

H(t) =
2

3
t−1(1 +O(t−

1
2 )),

Σ+ +
1

4
= O(t−

1
2 ),

Σ− = O(t−
1
2 ),

N2 −
3

4
= O(t−

1
2 ),

N3 +
3

4
= O(t−

1
2 ),

P (t) = O(t−
1
2 ).

From this theorem we can obtain some other results. Let λi be the eigenvalues of kij with
respect to gij :

det(kij − λδij) = 0. (16)

We define pi = λi
k as the generalized Kasner exponents. From (2) we see that the eigenvalues

(16) of the second fundamental form with respect to the induced metric are also the solutions of:

det(σij − [λ− 1

3
k]δij) = 0.

Let us define the eigenvalues of σij with respect to gij by λ̂i:

λ̂i = λi −
1

3
k.

Using the optimal estimates for Σ+, Σ− andH and the fact that the sum of the generalized Kasner
exponents is equal to one, we finally arrive at the generalized Kasner exponents for Bianchi Type
VI0 (12 ,

1
4 ,

1
4) up to an error of order O(t−

1
2 ). V2 and V3 become constant asymptotically. Now

f(t0, p) has compact support on p and denoting by p̂ the momenta in an orthonormal frame since
f(t, p̂) is constant along the characteristics, we have |f(t, p̂)| ≤ ‖f0‖ = sup{|f(t0, p̂)|}. Let us
summarize this in the following corollary:

Corollary 1. Consider the same assumptions as in Theorem 1. Then

gV I0 = t diag(tK1,K2,K3),

with Kn = Cn +O(t−
1
2 ) and where C1-C3 are independent of time. The corresponding result for

the inverse metric also holds.

pV I0 = pEM +O(t−
1
2 )

ρ = ρEM (1 +O(t−
1
2 ))

Sij ≤ C|f0|t−3

The fact that this quotient vanishes asymptotically means that matter behaves asymptotically
as dust as it is expected.
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7. Conclusions and Outlook
For Bianchi Type VI0 even for the reflection symmetric case there is no analogous previous result.
The reason is that it is not compatible with the LRS-symmetry. Thus, our result on Bianchi
Type VI0 clearly shows that the methods developed are powerful in the sense that one can obtain
results which have been out of reach with the techniques developed until now. An important
question is whether it is possible to remove the small data assumptions. We will work on this
question using techniques developed in [6]. For details of the presented results we refer to [7].
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