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Abstract. In the paper we consider mathematical problem of interaction of different
dimensional physical fields for complex composite structures. We investigate the mixed
transmission problem arising in the model of fluid-solid acoustic interaction when a piezo-ceramic
elastic body (Ω+) is embedded in an unbounded fluid (Ω−). The corresponding physical process
is described by boundary-transmission problems for second order partial differential equations.
In particular, in the bounded domain Ω+ we have 4 × 4 dimensional matrix strongly elliptic
second order partial differential equation, while in the unbounded complement domain Ω−

we have a scalar Helmholtz equation describing an acoustic wave propagation. The physical
kinematic and dynamic relations mathematically are described by appropriate boundary and
transmission conditions. With the help of the potential method and theory of pseudodifferential
equations the uniqueness and existence theorems are proved in Sobolev-Slobodetski spaces.

1. Introduction
In applications we rather often encounter multi-component composed bodies, where in differ-
ent components we have different dimensional physical fields. In such cases, we actually have
interaction problems for physical fields with different dimensions in the adjacent domains. The
corresponding mathematical models for composed bodies are described by boundary, boundary-
contact and transmission problems for systems of partial differential equations (PDE). The
matrix operators generated by these PDEs have different orders in different domains. Further-
more, the situation becomes complicated because of the fact that on the interfaces between
the adjacent domains of the composed body one needs to find appropriate interface conditions
relating the different dimensional physical fields.
Due to the rapidly increasing use of composite materials in modern industrial and technological
processes, on the one hand, and in biology and medicine, on the other hand, the mathematical
modeling related to complex composite structures and their mathematical analysis became very
important form the theoretical and practical points of views in recent years.
We consider the model of fluid-solid acoustic interaction when a piezo-ceramic elastic body (Ω+)
is embedded in an unbounded fluid (Ω−). In this case in the domain Ω+ we have four-dimensional
piezoelectric field (a displacement vector with three components and an electric potential) while
in the unbounded domain Ω− we have a scalar acoustic wave field.
One such example of interacting of different dimensional fields is a piezoelectric transducer.
Which can be used either to transform an electric current to an acoustic pressure field or, the
opposite, to produce an electric current from an acoustic field. These devices are generally use-
ful for applications that require the generation of sound in air and liquids. Examples of such
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applications include phased array microphones, ultrasound equipment, inkjet droplet actuators,
drug discovery, sonar transducers, bioimaging, and acousto-biotherapeutics (see [6], [19–22]).
Only few papers are devoted to the strict mathematical analysis of the above named problems.
In the following papers mainly are obtained numerical results (see [13], [15], [16]).
In the present paper for boundary-transmission problems generated by the above mentioned
mathematical model, we prove the existence and uniqueness theorems in Sobolev-Slobodetski
spaces.
Same type problems for the classical model of elasticity (elastic body is embedded in fluid) are
considered and studied in the papers: [1–5], [7–9], [11], [12], [14], [17], [18]. In these papers
in the bounded domain Ω+ is three dimensional elastic field (displacement vector with three
components) and scalar wave field in unbounded domain Ω−.
In our case addition of electric potentials complicates investigation and needs special analyses.
We investigate the above mentioned problems with the use of the potential method and the
theory of pseudodifferential equations on manifolds.

2. Piezoelectric field
Let Ω+ be a bounded 3-dimensional domain in R3 with a compact, C∞-smooth boundary
S = ∂Ω+ and Ω− := R3\Ω+. Assume that the domain Ω+ is filled with an anisotropic
homogeneous piezoelectric material.
The basic equation of steady state oscillation of the piezoelectricity for anisotropic homogeneous
media is written as follows:

A(∂, ω)U + F = 0 in Ω+,

where U = (u, φ)⊤, u = (u1, u2, u3) is a displacement vector, φ = u4 is an electric potential
and F = (F1, F2, F3, F4)

⊤. The three-dimensional vector (F1, F2, F3) is mass force density, while
−F4 is charge density. A(∂, ω) is the matrix differential operator,

A(∂, ω) = [Ajk(∂, ω)]4×4,

Ajk(∂, ω) = cijkl∂i∂l + ρ1ω
2δjk, Aj4(∂, ω) = elij∂l∂i (1)

A4k(∂, ω) = −eikl∂i∂l A44(∂, ω) = εil∂i∂l j, k = 1, 2, 3,

where ω > 0 is the oscillation (frequency) parameter, ρ1 is the density of piezoelectric material,
cijlk, eikl, εil are elastic, piezoelectric and dielectric constants respectively, δjk is the Kronecker
symbol and summation is over repeated indices. These constants satisfy the following symmetry
conditions:

cijkl = cjikl = cklij , eijk = eikj , εij = εji, i, j, k, l = 1, 2, 3.

Moreover from physical considerations it is assumed that the quadratic forms cijklξijξkl and
εijηiηj are positive definite, which provides positiveness of the internal energy:

cijklξijξkl ≥ c0 ξijξij ∀ξij = ξji ∈ R, (2)

εijηiηj ≥ c1 |η|2 ∀η = (η1, η2, η3) ∈ R3, (3)

where c0 and c1 are positive constants.
A(∂, ω) is a strongly elliptic nonselfadjoint operator.
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In the theory of piezoelasticity the components of the three-dimensional mechanical stress vector
acting on a surface element with a normal n = (n1, n2, n3) have the form

σijni = cijlkni∂luk + elijni∂lφ j = 1, 2, 3,

while the normal components of the electric displacement vector D = (D1, D2, D3)
⊤ read as

−Dini = −eiklni∂luk + εilni∂lφ.

Let us introduce the following matrix differential operator

T (∂, n) = [Tjk(∂, n)]4×4,

Tjk(∂, n) = cijlkni∂l, Tj4(∂, n) = elijni∂l,

T4k(∂, n) = −eiklni∂l, T44(∂, n) = εilni∂l, j, k = 1, 2, 3.

For a vector U = (u, φ)⊤ we have

T (∂, n)U = (σ1jnj , σ2jnj , σ3jnj , −Dini)
⊤. (4)

The components of the vector TU given by (4) have the physical sense: the first three components
correspond to the mechanical stress vector in the theory of electroelasticity, while the forth one
is the normal component of the electric displacement vector.
In Green’s formulae, there appears also the following boundary operator associated with the
adjoint differential operator A∗(∂, ω) = A⊤(−∂, ω),

T̃ (∂, n) = [T̃jk(∂, n)]4×4,

where

T̃jk(∂, n) = Tjk(∂, n), T̃j4(∂, n) = −Tj4(∂, n),

T̃4k(∂, n) = −T4k(∂, n), T̃44(∂, n) = T44(∂, n), j, k = 1, 2, 3.

3. Scalar field
We assume that the exterior domain Ω− is filled by a homogeneous isotropic (fluid) medium
with the constant density ρ2. Further, let some physical process (the propagation of acoustic
wave) in Ω− be described by a complex-valued scalar function (scalar field) w being a solution
of the homogeneous wave equation (Helmholtz equation)

∆w + ρ2ω
2w = 0 in Ω−, (5)

where ∆ =
3∑

j=1

∂2

∂x2
j
is the Laplace operator.

We say that a solution w to the Helmholtz equation (5) satisfies the classical Sommerfeld
radiation condition if the following relation holds

∂w(x)

∂|x|
− i

√
ρ2ωw(x) = O(|x|−2), |x| → ∞. (6)

Note that if solutions of Helmholtz equation (5) in Ω− satisfy Sommerfeld radiation condition
then (see [23])

w(x) = O(|x|−1), |x| → ∞.
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Denote by Som(Ω−) a class of solutions of the Helmholtz equation (5) satisfying the Sommerfeld
radiation condition.
Let Ω be a domain in R3 with a compact simply connected boundary ∂Ω ∈ C∞.
By Hs(Ω) (Hs

loc(Ω)) and Hs(∂Ω), s ∈ R, we denote the L2 based Sobolev-Slobodetski spaces on
a domain Ω and on a closed manifold ∂Ω.
If M is a smooth proper submanifold of a manifold ∂Ω, then we denote by H̃s(M) the subspace
of Hs(∂Ω),

H̃s(M) := {g : g ∈ Hs(∂Ω), supp g ⊂ M},

while Hs(M) denotes the space of restrictions on M of functions from Hs(∂Ω),

Hs(M) := {rMg : g ∈ Hs(∂Ω)},

where rM is the restriction operator onto M.

4. Formulation of mixed type interaction problem for steady state oscillation
equations
Let us consider interaction problem of fluid and piezoelectric body. We assume that S = ∂Ω+ =
∂Ω− ∈ C∞.
Let the boundary S = ∂Ω+ = ∂Ω− be divided into two disjoint parts SD and SN , i.e.
S = SD ∪ SN , SD ∩ SN = ∅ and lm := ∂SD = ∂SN ∈ C∞.
Mixed type problem (Mω): Find a vector-function U = (u, φ)⊤ ∈ [H1(Ω+)]4 and scalar
function w ∈ H1

loc(Ω
−)

∩
Som(Ω−) satisfying the following condition

A(∂, ω)U = 0 in Ω+, (7)

∆w + ρ2ω
2w = 0 in Ω−, (8)

{u · n}+ = b1{∂nw}− + f0 on S, (9)

{[T (∂, n)U ]j}+ = b2{w}−nj + fj on S, j = 1, 2, 3, (10)

{φ}+ = f (D) on SD, (11)

{[T (∂, n)U ]4}+ = f (N) on SN , (12)

where f0 ∈ H−1/2(S) , fj ∈ H−1/2(S), j = 1, 2, 3, f (D) ∈ H1/2(SD), f (N) ∈ H−1/2(SN ).
b1b2 ̸= 0, Im[b1b2] = 0 and the symbols {·}± denote the traces on S from Ω±.
Note that the transmission conditions (9)-(10) are kinematic and dynamic conditions. For
interaction problem of fluid and piezoelectric body w(x) = P sc(x) is pressure of scattered
acoustic wave,

b1 = [ρ2ω
2]−1, b2 = −1, f0(x) = f inc

0 (x) = [ρ2ω
2]−1{∂nP inc(x)}−,

(f1, f2, f3) = b2n(x){P inc(x)}−,

where P inc is plane incident wave,

P inc(x) = eid·x, d = ω
√
ρ2η, |η| = 1,

here d = (d1, d2, d3) denotes the direction of propagation of the plain incident wave.
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5. Uniqueness of solution of the problem (Mω)
We denote by JM (Ω+) the set of values of the frequency parameter ω > 0 for which the following
boundary value problem

A(∂, ω)U = 0 in Ω+, (13)

{u · n}+ = 0 on S, (14)

{[T (∂, n)U ]j}+ = 0 on S, j = 1, 2, 3, (15)

{φ}+ = 0 on SD, (16)

{[T (∂, n)U ]4}+ = 0 on SN , (17)

has a nontrivial solution U = (u, φ)⊤ ∈ [H1(Ω+)]4, where homogeneous mixed boundary
conditions are given (see. [10]).
Solutions of the problem (13)-(17) are called Jones modes, while the corresponding values of
ω are called Jones eigenfrequencies. The spaces of Jones modes corresponding to ω we denote
by XM,ω(Ω

+). The spaces of Jones modes for the differential operator A∗(∂, ω) denote by
X∗

M,ω(Ω
+).

Note that JM (Ω+) are at most enumerable, and for each ω corresponding space of Jones modes
XM,ω(Ω

+) are of finite dimension.

THEOREM 5.1 Let a pair (U,w) be a solution of the homogeneous problem (Mω). Then
U ∈ XM,ω(Ω

+) and w = 0 in Ω−.

COROLLARY 5.2 Let ω /∈ JM (Ω+). Then the homogeneous problem (Mω) has only the
trivial solution.

6. Existence results for the problem (Mω)
THEOREM 6.1 If ω /∈ JM (Ω+), then the problem (Mω) is uniquely solvable.

THEOREM 6.2 If ω ∈ JM (Ω+), then mixed type problem (Mω) is solvable if and only if the
orthogonality condition

3∑
j=1

⟨fj , {Uj}+⟩S − ⟨{[T̃U ]4}+, f (D)⟩SD
+ ⟨f (N), {U4}+⟩SN

= 0, U ∈ X∗
M,ω(Ω

+), (18)

holds, and the solution is defined modulo Jones modes XM,ω(Ω
+). Where the symbols ⟨ , ⟩S,

⟨ , ⟩SD
, ⟨ , ⟩SN

denote the duality between the spaces H−1/2(S) and H1/2(S), H̃−1/2(SD) and

H1/2(SD), H
−1/2(SN ) and H̃1/2(SN ) respectively.

REMARK 6.3 Let (f1, f2, f3) = nφ, where φ is scalar function and n is unit normal vector to
S. Then necessary and sufficient condition (18), to be solvable the problem (Mω), can be written

−⟨{[T̃U ]4}+, f (D)⟩SD
+ ⟨f (N), {U4}+⟩SN

= 0.
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