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Abstract. A kinetic model of bonds destruction, interfacial adhesion strength and 
durability of interface junction is developed. It is assumed that a zone of weakened bonds 
exists at materials interface at an initial time instant. This weakened zone is considered as a 
crack-like defect filled with distributed spring-like bonds. Bonds mechanical properties are 
time-dependent under external loads. Bonds properties kinetics analysis is performed on the 
basis of Zhurkov’s thermofluctuational approach of bonds destruction. The computational 
results those obtained on the basis of the developed numerical algorithm are presented. 

 

1.  Introduction 
The model of a crack with bonds in the bridged zone allows one to determine the crack resistance and 
the adhesive strength of joints between different materials on the basis of micromechanical properties 
of the bonds [1–3]. The development of this model with consideration of time-variation in the physical 
and mechanical properties in the crack bridged zone allows one to estimate the long-term strength and 
time characteristics of material crack resistance. 
In the present paper, Zhurkov’s kinetic model of thermal fluctuation fracture [4,5] together with the 
crack bridged zone model, is used for bonds destruction and interfacial adhesion strength modelling. It 
is assumed that at least one of the materials is a polymer and the crack part occupied by the bridges 
(the bridged zone) is not small compared with the crack length. The estimate of the bonds destruction 
in the crack bridged zone and kinetic characteristics of the interfacial junction are based on the 
following assumptions: 

- at the initial time, on the interface there is a region of weakened bonds between materials (this 
may be a technological defect or a weakened region caused, for example, by the diffusion 
activity of the medium); 

 - the bond density in that region varies in time according to the thermal fluctuation mechanism; 
- the bond rigidity is proportional to their density at each point of the crack bridged zone; 
- the defect nucleation occurs near the center of the weakened bond region; 
- the condition for the crack-defect formation is the decreasing in the average bond density to 
the critical value on the corresponding part of the weakened bond region. 

2.  Kinetics of bonds in the crack bridged zone 
The durability of materials under the action of the tensile stress σ satisfies the following 
experimentally established formula [4,5] 
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where τ  is the specimen fracture time,  is the Boltzmann constant, T  is the absolute temperature, k
( )0   /h kTτ ≈  is a constant of the order of the atomic thermal vibration period ( s),  is 

the Planck constant, 

13 1210 – 10− − h
μ  is a dimensionless coefficient depending on the type of the material (polymer, 

metal, or ceramics), and ( )U σ  is the bond destruction energy (fracture activation energy). 

For a sufficiently wide interval of external loads and temperature, the function ( )U σ  is linear, 
 
 ( ) 0 ( ), ( )U U qT A Aσ σ σ γ= − − = σ  (2) 
 
where  is the interatomic bond breakage activation energy and  and 0U q γ  are structure-sensitive 
parameters characterizing the material thermal and strength properties. 
It follows from expression in Eq. (2) that ( )A σ  decreases the bond breakage energy barrier and can 
be treated as the work done by external stresses in the body fracture. 
A formula similar to that in Eq. (1) also holds for the average life time (durability) bτ  of a loaded 
interatomic bond [4,5]. The work of external stresses in this case depends on the stress value in the 
bond. The inhomogeneity of the stress distribution in the bonds in an actual body results in local 
damage accumulation and formation of defects. The most intensive damage accumulation occurs in 
the weakened interatomic (intermolecular) bond regions in the material. The weakened bond region in 
the material (or on the material interface) will be treated as a crack filled with bonds (bridges) whose 
properties vary in time according to the thermal fluctuation mechanism. 
It is assumed that the expression in Eq. (1) also holds for bonds in the crack bridged zone but the work 
( )A σ  contained in Eq. (2) is the bond deformation work, which is determined with the 

inhomogeneous stresses distribution over the bonds in the bridged zone taken into account. 
The bond deformation work A  and the bond durability bτ  in the bridged zone of a rectilinear crack on 
the material interface (Fig. 1) depend on the tension of bond in the bridged zone bσ (for details, see 
Eqs. (12)-(13) below) and the coordinate x  determining the bond location along this zone, 

( )  ,  bA A σ= x  and ( ),b b b xτ τ σ= . 

Assume (following [6]) that the time variation in the bond density ( ),  n x t  in the crack bridged zone is 
described by the chemical destruction equation 
 

 ( , ) ( , )
( , )b b

dn x t n x t
dt xτ σ

= −  (3) 

 
where ( ),b b b xτ τ σ=  is the time till the breakage of the molecular bond located in the crack bridged 
zone at the distance x−  from its tip (the bond durability). 
It follows from Eq. (3) that 
 

 0( , ) exp
( , )b b

tn x t n
xτ σ

⎛ ⎞
= −⎜

⎝ ⎠
⎟  (4) 

 
where ( ) 0,  0n x n=  is the initial bond density. 
The time variation in the bond density leads to a variation in the bond compliance in the crack bridged 
zone. Let  denote the rigidity of a single molecular bond. Then the effective rigidity of bonds 
per unit area of the crack bridged zone is 

( )sk x
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 ( ) ( )( , , ) ( , ) exp
( , )b s b

b b

tk x t k x n x t k x
x

σ
τ σ

⎛ ⎞
= = −⎜

⎝ ⎠
⎟  (5) 

 
where ( ) ( ) 0sbk x k x n=  is the initial bond rigidity per unit area of the crack bridged zone. 
It follows from Eq. (5) that the bond compliance in the crack bridged zone can be represented as 
 

 ( )( , , ) exp
( , )b b

b b

tc x t c x
x

σ
τ σ
⎛ ⎞

= ⎜
⎝ ⎠

⎟  (6) 

 
where ( ) ( )1 /b bc k⋅ = ⋅  is a function determining the initial bond compliance in the crack bridged zone. 
 

 
Figure 1. Bridged crack at the interface of different material 

3.  Bridged interface crack model 
We use proposed in the previous papers [1-3] the bridged interface crack model with the assumption 
that the crack surfaces interact in some zones starting from the crack tips. Let us consider the planar 
elasticity problem on a crack ( x ≤ ) at the interface ( )0y =  of two dissimilar joint half-planes, see 
Fig.1. Assume that the uniform load 0σ  normal to the interface is acted at infinity. The crack surface 
interaction is supposed to be existing in the bridged zones, d x− ≤ ≤ . The size of the interaction 
zone depends on time ( )d d t=  due to the possibility the time changing of the bond properties. As a 
simple mathematical model of the crack surfaces interaction we will assume that the linearly elastic 
bonds act through the crack bridged zones. 
Denote by ( ),Q x t  the bond tractions occurring under the action of the external loads such that 
 
 2( , ) ( , ) ( , ) , 1y xQ x t q x t iq x t i= − = −  (7) 
 
where ( ),yq x t  and ( ),xq x t  are the normal and shear components of the traction, respectively. 
By incorporating the superposition principle we’ll consider the 2D-elasticity interface crack problem 
with the following boundary conditions at the crack surfaces ( )0y =  
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 ( , ) ( , ) , ( )yy xy ox t i x t x d tσ σ σ− = − ≤ −  (8) 
 
 ( , ) ( , ) ( ( , )) ( , ), ( )yy xy o y xx t i x t q x t iq x t d t xσ σ σ− = − + − − ≤ ≤  (9) 
 

The opening of the interface crack, ( ),u x t , can be written as follows 
 
 ( , ) ( , ) ( , ),y xu x t u x t iu x t= −  (10) 
 
where ,x yu  are the projections of the crack opening on the coordinate axes x  and  respectively. y

The function ( ),u x t  can be represented in the following form 
 
  (11) ( , ) ( ) ( , ) , ( ) ( ) ( ), ( , ) ( , ) ( , )Q y x Q Qy Qxu x t u x u x t u x u x iu x u x t u x t iu x t∞ ∞ ∞ ∞= + = − = −

 
Where  is the crack opening caused by the loads, ( )u x∞ 0σ− , acting at the crack surfaces and  
is the crack opening caused by the bond induced tractions under the action of the external loads. 

( , )Qu x t

The relation between the crack opening and bond tractions (the bond deformation law) will be written 
as follows 
 
 ( , ) ( , , )( ( , ) ( , )) ,b y xu x t c x t q x t iq x tσ= −  (12) 
 
where the function ( ), , bc x t σ  is determined by formula (6) and 2 2

b xq qσ y= + . 

For dimensionality reasons one can represent function ( ), , bc x t σ  in the formula (6) in the following 
form [1] 
 

 ( ) ( ) (0, , , ,b b
B B

Hc x x t c x t
E E

)bϕ σ ϕ= = σ  (13) 

 
where  is a linear scale proportional to the bonding zone thickness, H BE  is the effective Young 
modulus of the bonds and ( ), , bx tϕ σ  is dimensionless function and 
 

0
Hc =  

is the relative bond compliance. 
Let us write a system of the integral-differential equations for computation of the bond tractions 
( ),Q x t  in the crack bridged zone. From the first relation in expressions (11) we can obtain 

 

 
( , )( , ) ( ) Qu x tu x t u x

x x x
∂∂ ∂

∂ ∂ ∂
∞= +  (14) 

 
The interface crack opening components caused by the external normal stresses, σo (or the stresses - σo 
at the crack surfaces), are equal to [7] 
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1 1( ) , ,
2(1 ) 2

i
o k k x k nu x x

x k

βσ α μα βμ α
α μ μ μ μ

−

∞

⎛ ⎞+ + − +⎛ ⎞= + − =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠ π
=  (15) 

 
where 1,2 1,23 4k ν= −  or 1,2 1,2 1,2(3 ) / (1 )k ν ν= − +  for the plane strain and plane stress, respectively; 

1,2ν and 1,2μ  are the Poisson ratios and shear moduli of the joint materials 1 (Y>0) and 2 (Y<0). 
To obtain the expression of the derivative of the crack opening caused by the bond action 
( ( , )Qu x t x∂ ∂ ) we had used the representations for the derivative of the displacements of the interface 
crack surfaces under the action of arbitrary loads given in [7], see details of transformations in [1]. 
Finally, by substituting the expressions for the derivatives (those obtained on the basis of Eqs. 
(12),(13) and (15)) into Eq. (14) we arrive to system of the integral-differential equations for unknown 
functions ( ), ,x yp x t (see details in [8]) 
 

 

( )

( )1

2 2
1 /

(1 ), , ( ( , ) ( , )) ( ( , ) ( , ))
2(1 )

21 1( , ) ( , ) ( , )
1 11 (1 ) 1

b y x x y

i i

y x
d

s t q s t iq s t q s t iq s t
s

i ss sR s sp s t i p s t d
s ss s

β β

∂ πε αϕ σ
∂ α

πε α βε η η η
α

− −

−

−⎡ ⎤− − + +⎣ ⎦ +

−− −⎛ ⎞ ⎛ ⎞⎡ ⎤− =⎜ ⎟ ⎜ ⎟⎣ ⎦+ +⎝ ⎠ ⎝ ⎠− +
∫

−
 (16) 

where 

 ( ) 1( , ) ( , ) ( , ) ( , )
1

i

y x y x
sq s t iq s t p s t ip s t
s

β−−⎛ ⎞− = − ⎜ ⎟+⎝ ⎠
 

 

 , ,
, ,

( , ) ( , )
, , ( , ) , ( , )y x y x

y x y x
o o

q x t p x txs t q s t p s tξ
σ σ

= = = =  

 
The singular kernel ( , )R s η  and the parameter ε  in Eqs. (16) are defined as 
 

2
1 2

2 2
1 2

1 1 1( , ) ,
2

BE k kR s
s H
η

η ε
η π μ

⎛ ⎞−
μ

+ +
= = +⎜ ⎟− ⎝ ⎠

    

 
Parameter ε characterizes the ratio of the compliance of the joint part containing a crack without 
bonding to the bond compliance. Equations (16) represent the system of two singular integral-
differential equations with the Catchy type kernels. This system can be solved numerically. 

4.  Bonds deformation work and stress intensity factors 
The bond deformation work (per unit width of the body) on the crack bridged zone of size  is given 
by the expression [1, 8] 

dx

 

  (17) 
( )( )

0 0

( ) ( ) ( )
yx u xu x

x x x y y ydU x q u du q u du dx
⎡ ⎤

= +⎢
⎢ ⎥⎣ ⎦
∫ ∫ ⎥

 
where  are the opening components in the crack bridged zone at the point with coordinate ( ),x yu x x  

and ( ),x yq x are the bonds tractions. The number of molecular bonds on the interval  is dx
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 ( , )dn n x t dx=  
 
The work per one intermolecular bond is estimated under the assumption that the adhesion junction is 
formed by chains of polymer molecules of size of the monomer link . It is assumed that the bond 
elongation (of the chain molecule) in deformation within the limits of linear elasticity is much less 
than its initial length and the crack opening in the bridged zone at the distance 

ma

x−  from the crack tip 
is approximately equal to the length of the loaded segment of the chain molecule bridging the crack 
surfaces. In this case, the number mN  of monomer links between the crack surfaces on an interval of 
length  is dx
 
 2 2, ( , ) ( , )n x yN dn u x t u x t aω ω= = + m  (18) 
 
where ω  is the number of monomer links of the polymer chain making a bond between the crack lips. 
The work per one intermolecular bond is equal to 
 

 ( )( , )b
dU xA x

dn
σ

ω
=  (19) 

 
Finally, expression (1) can be rewritten in the form convenient for computations, 
 

 0
( , )( , ) exp M M b

b b
U A xx

RT
στ σ τ −⎛= ⎜

⎝ ⎠
⎞
⎟  (20) 

 
where MU  is the energy of activation of one mole of intermolecular bonds, 0M AU U N= , 

( ) ( ),  ,  M b b AA x A x Nσ σ= A, kN=  is the gas constant, and AN  is the Avogadro number. R
 
Having the solution of system (16) one can calculate the stress intensity factors (SIF) IK  and IIK  
following to [9] 
 
 ( )

0
lim 2 ( , ) ( , ) ,i

yy xyK iK t i t β

δ
πδ σ δ σ δ δ −

Ι ΙΙ →
+ = +  (21) 

 
where ( , )yy tσ δ  and ( , )xy tσ δ  are the stresses ahead the crack tip caused by the external loads and 
bond stresses, δ is the small distance to the crack tip. 
On the other hand, the SIF can be written as follows 
 
  (22) int int( ) (ext extK iK K K i K KΙ ΙΙ Ι Ι ΙΙ ΙΙ+ = + + + ) ,
 
where  and  are the SIF caused by the external loads and bond stresses. I,IIKext int

I,IIK
Taking into account relations (21) and (22) we can obtain (see details in [1]) 
 

 
1

2
I2

1 /

( , ) ( , )2cosh( )(1 2 ) ,
(2 ) 1

y x
oi

d

q s t itq s t
K iK i ds K K K

sβ

π πβσ β
πΙ ΙΙ

−

⎡ ⎤+
+ == + − = +⎢ ⎥

−⎣ ⎦
∫ 2

II  (23) 

 
where K is modulus of the SIFs. 
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5.  Numerical algorithm 
The system of the integral-differential equations (16) is solved by a collocation scheme for each time-
step. The crack bridged zone, ( )d t , is divided into M  quadratic finite elements. Unknown functions 
are represented by parametric quadratic polynomials on each element. This procedure enables us to 
obtain expressions for the unknown functions and their derivatives through the nodal values of these 
functions. Then the system of the integral-differential equations is reduced to a system of linear 
algebraic equations relative to the nodal values of the unknown functions [1]. 
For each time step bond compliances are assumed to be proportional to the density of unbroken bonds. 
The following condition is used as the criterion of full bonds destruction on a part of bridged zone of 
size  at its trailing edge Δ
 
 ( )kN t N≤ cr  (24) 
 
where ( )kN t  is the average density of bonds at the time step  and kt crN  is the limit value of the bond 
density. 
The modeling further growth of the initial nucleated defect is performed by decreasing the bridged 
zone size according to condition (24). The time-step scheme of numerical solving the integral-
differential equation for a crack-like region with the bridged zones is used at each step of the defect 
increasing [8]. 
The computations were carried out for a combination of materials typical of microelectronic devices 
[10]: one of the materials is metal (copper-based alloy) with elasticity modulus 1  130E GPa= , and the 
other is an (epoxy-based) polymer with elasticity modulus 2  2E GPa= , the Poisson ratios of the 
materials are 1 0.3ν =  and 2 0.35ν = , respectively, and the elasticity modulus of the bonds is 2bE E= . 
The size of the weakened bond region located along the material interface is set to be equal to 

. It is assumed that the bonds are formed by chains of polymer molecules where the size of 
the molecule monomer chain is equal to . The bond deformation law in the computation 
process was assumed to be linearly elastic with compliance constant along the weakened bond region 
at the initial time. (Estimates of mechanical parameters of bonds in the crack bridged region can be 
found in [1].) The kinetic dependences were calculated for the following parameter values [4,5]: 

, the energy of activation of the molecular bond breakage was 
, the initial bond density was 

52 10 m−=
9 10ma −= m

ole
8.3 / ·Aq N J mole K⋅ =

150 /MU kJ m= 18 2
0 10n m−= , 12

0 10 sτ −= , and 1μ = . The limit value 
of the bond density in the initial defect formation region was chosen as 00.1crN n= . The external load 
was assumed to be constant in time. 
As an example of proposed model application in Fig. 2 is shown the time variation of the stress 
intensity factor module in the process of growth of the bond-free crack part for different values of 
temperatures. In the bond breakage process, their strengthening effect decreases, and the stress 
intensity factor increases. The largest increase in the stress intensity factor occurs at the last stages of 
the defect growth when the stress intensity factor tends to the corresponding value for the bond-free 
crack. Assuming (for the conservative estimate) that the ratios of the time intervals in which the stress 
intensity factor attains the largest value are proportional to the durability of the joint, one can see that 
the increase in the temperature (in the range under study) by 25T KΔ = decreases the joint durability 
by more than one order of magnitude. The values of the stress intensity factor modulus are normalized 
by the value , the stress intensity factor modulus due to the action of the external load for cracks 
without bonds. 

0K
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Figure 2. Variation of SIF module due to bonds destruction 

6.  Summary 
The method of estimation of bonds degradation in the weakened region on the interface between 
materials is proposed. The theory of thermal fluctuation fracture and the interfacial crack bridged zone 
model are combined and numerical algorithm based on singular integral-differential equations is 
proposed. The results of computations allow to estimate the increasing the SIF module due to bonds 
degradation over time. These results might be helpful for durability analysis of adhesion joints. Since 
the computational parameters strongly depend on the initial data (which is caused by the exponential 
dependence of the durability in formula (1)), the comparative analysis of joints of different materials 
under appropriate loading conditions is of greatest practical interest in this method. 
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