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Abstract. We derive an optical model for the light intensity distribution around the critical 

angle in a standard Abbe refractometer when used on absorbing homogenous fluids. The model 

is developed using rigorous electromagnetic optics. The obtained formula is very simple and 

can be used suitably in the analysis and design of optical sensors relying on Abbe type 

refractometry. 

1. Introduction. 
There is an increasing need for reliable small-scale refractometers for chemical and biological 

microfluidic devices [1-3]. However, all refractometers developed to date are assumed will be used 

with transparent fluids and their use with absorbing liquids is not always possible. On the other hand, 

one of the more robust ways to measure a refractive index of liquids is by means of an Abbe 

refractometer introduced many years ago [4]. Actually, most bench-top refractometers in use today are 

of the Abbe type. Nevertheless, to our knowledge, the Abbe refractometer has not yet been exploited 

in microfluidics. We believe that this is in part due to the lack of rigorous optical models for 

measuring with Abbe type going beyond geometrical ray optics. By Abbe type refractometers we 

mean refractometers in which diffuse light is refracted from a sample fluid into a prism of higher 

refractive index, making apparent the critical angle from which the refractive index of the fluid can be 

obtained. It is not difficult to realize that the basic principle of Abbe refractometers could be 

developed into compact optical sensors for applications in microfluidics. As most refractometers, the 

Abbe refractometer was thought for use with transparent materials. Nevertheless, in practice it is often 

used on substances with some degree of opacity without precautions. Very few works have been 

devoted to understand the use of an Abbe refractometer with opaque media. The use of standard Abbe 

refractometers with turbid colloidal fluids was investigated in Ref. [5] many years ago. But many 

questions regarding the correct determination of a critical angle were left open at that time and no 

optical model was derived then. Only recently we initiated new research on the measurement of the 

effective refractive index of highly turbid fluids with Abbe type refractometers [6, 7]. In the latter 

references we did not consider the case of samples of complex refractive index without optical 

scattering. Thus, the model derived in Ref. [7] is not applicable to homogeneous absorbing fluids, 

which are actually involved in many chemical and biological sensing applications. In standard Abbe 

refractometers, the sample is in the form of a fluid film at the base of an optical prism of higher 

refractive index. Diffuse light is transmitted through the sample to the prism. Light transmitted into the 

prism is confined to angles of refraction smaller than the critical angle. Thus locating de edge of the 
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light’s cone yields the sample’s refractive index. However when the sample is not optically 

transparent, the edge becomes fuzzy and the determination of the refractive index may not be 

straightforward. In this work we develop a model for the light’s intensity angular-profile around the 

critical angle in Abbe refractometers with homogeneous absorbing fluids. We suppose that light 

scattering within the sample fluid is negligible. Our aim is to provide a simple formula for the angular 

intensity profile around the critical angle in a standard Abbe refractometer that could be related to the 

complex refractive index of the sample. 

2. Theoretical model.  
In standard Abbe refractometers the sample fluid is placed between the base of a glass prism and a 

diffusing translucent surface. Light is incident to the diffusing surface from the side opposite to the 

prism and scattered within the sample fluid film as shown in Fig. 1. The light transmitted into the 

prism is refracted within an angular cone limited by the critical angle. In the standard methodology, 

the refractive index of the sample fluid is obtained from locating the critical angle from the edge of the 

light cone. When the sample has a complex refractive index, the angular profile around the edge of the 

light cone is modified with respect to that when the sample has a real refractive index.  Nevertheless, 

from the angular intensity profile it can be possible to retrieve the real and imaginary parts of the 

refractive index of the sample fluid or simply sense variations of their value.  

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

Figure 1: Schematic illustration of the basic operation of a standard Abbe refractometer. 
 

 We can follow closely the model developed in [7] for the intensity angular-profiles of light 

scattered within a turbid colloidal fluid and transmitted into a transparent medium of higher refractive 

index. The difference here is that the effective radiation sources due scattering are not distributed 

through the sample but all are located on a plane parallel to the interface between the absorbing liquid 

sample and the transparent glass of higher refractive index as illustrated in Fig. 1. 

   Let us start by considering an opaque rough surface, flat on the average, placed at a distance d from 

the bottom surface (flat) of a transparent glass prism. Let us assume that the space in-between the 

irregular surface and the bottom of the prism is filled with an absorbing, homogeneous liquid of 

complex refractive index nm. Let us place the origin of coordinates on the interface between the prism 

and the liquid sample with the z-axis pointing into the prism as shown in Fig. 1. Let us assume that 

monochromatic light of frequency ω is incident to the rough surface from z < − d and scattered in all 

directions. We may regard the illuminated rough surface as a random array of sources emitting 

incoherently in all directions. The sources can be modelled as localized electrical currents embedded 

in the sample liquid of refractive index nm and distributed within a very thin film just below the liquid 
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sample. Let us divide the radiating current into a large number of independent localized currents.  The 

electric field radiated by the nth localized current can be expressed as, 
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where Vn is the volume occupied by the nth current and 
t
G(r,r ')  is the Green’s function dyadic of the 

vector Helmholtz equation in the sample medium at frequency ω. The time dependence is implicit in 

all equations. For observation points above all the radiating currents, we can use the following plane 

wave expansion of the Green function dyadic [8],  
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Since we are assuming nm is a complex quantity, Eq. (3) is a linear superposition of inhomogeneous 

plane waves in the sample medium. Note that the kernel is divided by k
z
which is zero when 

k
x

2 + k
y

2 = k
0

2n
m

2
. This corresponds to plane waves traveling parallel to the interface between the sample 

liquid and the prism  (the plane z = 0).    

Now, let us propagate these plane waves through the sample up the prism’s bottom surface.  For 

the sake of simplicity we will assume the detection plane is within the prism in the far zone. In general 

it is relatively simple to consider the actual case in which the detection plane is outside the prism. Let 

us assume that the detection plane is at a large distance from the interface and viewing towards the 

interface with the liquid sample. First we propagate the fields to just before the interface by evaluating 

Eq. (3) at z = 0−
. We get, 
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Then, the field just on the other side of the interface at z = 0
+
 is obtained by splitting the fields into its 

transverse electric, TE, and transverse magnetic, TM, components and multiplying by the 

corresponding transmission coefficient. Then we change 
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TE

 is a real unit vector. However, ŝ
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 in the kernel of Eq. (5) to 

propagate the field into the incidence medium of refractive index np. Then, we can propagate the 

transmitted field to the far zone and use the method of stationary phase to evaluate the integrals [9]. To 

this end, we assume that the interface transmits light through an aperture with a large but finite area A 

on the plane z = 0, and bring the observation point far away compared to the lateral dimensions of the 

aperture. We get, 
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the intensity profile in the detection plane we must add the contribution of all localized currents 

emitting incoherently light towards the detection plane. So we add the intensity at the detection plane 

due to all localized currents (we do not add the fields for incoherent sources). 

For simplicity we assume that all currents are located within a very thin film of thickness h and 

lateral dimensions of area A. Adding up the intensity due to all localized currents and taking the limit 

that the volume occupied by any of the localized currents tends to zero, yields,     
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3 16π2
, β  is the density of incoherently-emitting localized currents, and we assumed 

the area A is large compared to the sample’s depth d.  Since the unit vectors ŝ
TE

 and ŝ
TM

 are 

orthogonal to each other and we assume that light is randomly polarized we have, 
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Recall that k1 and k2 are functions of the viewing angles θ and ϕ. The intensity profile is measured over 

a very small range (compared to 2π) along the polar angle θ around the direction of the edge of the 

light cone and about the plane of incidence, that is around ϕ = 0.   Note that s
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is minimum. We may refer to the viewing angle θ that minimizes the latter expression as the critical 

angle. If the effective refractive index approaches a real number, the minimum of the magnitude of k
z
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becomes singular. However, the transmission coefficients t
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are in the form of Fresnel transmission coefficients. Then, both t
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 should be a smooth function of k1 and k2, and therefore, for a 

fixed rn we can approximate it as a constant within the small range of interest of viewing directions.  

Note that the magnitude of s
n
 must be proportional on the average to the intensity of the incident light 

I0. The integral in Eq. (7) simplifies to, 
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 and C is an instrumental constant determined experimentally. Note 

that we assumed h very small.  This is the main result of this paper. We must draw attention to the fact 

that θ in Eq. (9) is the angle of travel of light inside the prism. In a practical device the detector will be 

placed outside the prism and one must take into account refraction of light when exiting the prism.  

3. Numerical examples 
In Fig. 2a we plot the angular intensity profile of light refracted near the critical angle assuming the 

sample thickness is d = 100 µm and the fluid has a refractive index nm = 1.33 + ix. We show plots for x 

= 10
-6

, 10
-5

, 10
-4

 and 10
-3

. Note that a substance with x = 10
-3

 would be completely opaque in a 1 mm 

thick cuvette. For the plots in Fig. 3 we assumed the refractive index of the prism is 1.515 and the 

wavelength in vacuum is 635 nm.  
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Figure 2: (a) Plots of the intensity versus the angle of refraction (inside the prism) 

near the critical angle for a sample fluid of refractive index nm = 1.33 + ix with x = 

10
-6

, 10
-5

, 10
-4

 and 10
-3

. The refractive index of the prism was assumed to be 1.515, 

the wavelength 635nm and the sample thickness = 100 µm. (b) plots of the angular 

derivative of the curves in (a).  

 

We can see that for a small imaginary part of the refractive index, the intensity profile is “step-like” at 

the critical-angle determined by the real part of the refractive index and the refractive index of the 

prism. As the imaginary part of the refractive index of the sample fluid increases, the angular profile 

becomes smoother, but it sinks to zero at the same angle.  In the plots for x = 10
-6

, 10
-5

 and 10
-4

 one 

(a) (b) 
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can se there is an inflexion point. One should take the inflexion point as the critical angle, θc. From it 

one may obtain the real part of the refractive index of the sample using the usual formula ns = np sin
-1

 

(θc) where np is the refractive index of the prism and ns would be in this case the real part of the 

refractive index of the sample.  

In Fig. 2b we plot the angular derivative of the curves shown in Fig. 2a. Clearly the first three plots 

for x = 10
-6

, 10
-5

 and 10
-4

 show a sharp maximum at basically the same angle. However, the curve for x 

= 10
-3

 does not show a maximum and therefore the corresponding plot in Fig. 2a has no inflexion 

point. We may then conclude that standard Abbe refractometry can no longer be performed. 

Nevertheless, by adjusting Eq. (9) to the angular intensity profile one could retrieve the real and 

imaginary parts of the refractive index of the sample.  We may point out here that if d is reduced the 

angular intensity profile for x = 10
-3

 changes and an inflexion point appears. However if d is reduced 

too much, then the intensity profile starts to extend noticeably beyond the inflexion point. Anyhow, 

depending on the particular design of a refractometric device based on refraction of diffuse light near 

the critical angle one can use Eq. (9) as long as scattering within the sample is negligible. 

4. Conclusions 

We derived a simple formula for the angular intensity profile of light refracted from a homogeneous 

absorbing fluid into a transparent prism of higher refractive index. The formula could be used to 

model refractometric devices based on refraction of diffuse light from an absorbing fluid sample near 

the critical angle. It could also be advantageously used to retrieve the real and imaginary parts of the 

complex refractive index of a sample fluid from angular intensity profiles around the critical angle in 

Abbe type refractometers.  
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