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Abstract. Typically, Electrowetting on dielectric (EWOD) digital microfluidic devices consist 
of an array of metal electrodes covered with a continuous hydrophobic dielectric layer. The 
monitoring of droplet position and detection in EWOD is usually achieved via microscopy, 
thereby resulting in increasing the size and complexity of the instrumentation associated with 
such devices. This work for the first time demonstrates that metal clad leaky waveguide 
(MCLW) is suitable for detection in EWOD devices. MCLW devices typically consist of a 
metal layer covered with a dielectric layer in which the leaky waveguide mode propagates. The 
two structures are fundamentally compatible provided the metal and dielectric layer 
thicknesses and refractive indices can be optimised to permit both electrowetting and 
waveguiding. In this work, it has been shown that titanium electrodes covered with a 
fluoropolymer layer can be used to perform MCLW detection of droplets on EWOD platforms.  

1.  Introduction 
Electrowetting on dielectric (EWOD) devices are attractive for a range of applications as a result of 
their programmability and portability [1-5]. Optical detection, typically based on microscopy [5-6] and 
transmission [7], is commonly used to measure the output (e.g. antibody-antigen interactions) and 
monitor the position of droplets within EWOD devices. Such detection methods necessitate that the 
electrodes on at least one side of the EWOD device are made from a transparent material such as 
Indium Tin Oxide (ITO). The use of transmission based detection methods also requires a "clean" (e.g. 
non-turbid or non-absorbing) sample. Surface Plasmon Resonance imaging (SPRi) [8], whispering 
gallery mode (WGM) resonators [9] and integrated waveguides [10] have also been used to perform 
label-free sensing within EWOD devices. The use of SPRi for detection within EWOD devices, 
however, requires the formation of local detection zones that are free of hydrophobic dielectric [8]. 
The use of the WGM resonator and integrated waveguides also require additional fabrication steps.  

A typical metal clad leaky waveguide (MCLW) device consists of a dielectric waveguide and metal 
layers on a glass substrate. In a MCLW, Fresnel reflection is used at one waveguide boundary to 
partially confine light and a peak (or dip) in reflectivity is observed around the resonance angle. The 
shifts in the position and intensity of the peak (or dip) has been used to perform refractive index 
sensing and absorption measurements respectively [11-12]. To the best of our knowledge, however, 
the suitability of  MCLW for detection within EWOD devices has not been reported. 
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In this work, the inherent similarity of MCLW and EWOD structures has, for the first time, been 
exploited to perform detection and actuation using the same structure (See Figure 1 (a)). This reduces 
the complexity of fabrication and the integration of the EWOD device with optical instrumentation. In 
addition, MCLW devices can provide greater sensitivity than microscopy-based detection and relax 
the requirements for non-turbid and non-absorbing samples. 

2.  Experimental 

2.1.  Chemicals and Materials 
The chemicals used are as follows: hydrogen peroxide (30%), sulphuric acid (98%), acetone 
(>99.9%), glycerol (>99%), titanium (>99.99%, all: Sigma-Aldrich, Gillingham, UK), Norland optical 
adhesive (NOA) 13685 (Tech Optics, Kent, UK), Teflon® AF 1600 (DuPont, Geneva, Switzerland), 
FluorinertTM FC-40 (3M, Bracknell, UK), SPRTM 220-7.0 and MF-26A (both: Dow, Middlesbrough, 
UK). 18.2 MΩ water (Elga Maxima Ultra Pure, Vivendi Water Systems, Buckinghamshire, UK) was 
used. 1.2 mm thick glass slides were purchased from VWR International (Leicestershire, UK). 

2.2.  Microfabrication 

2.2.1.  Fabrication of MCLW devices 
The glass slides were cleaned in piranha solution (H2O2:H2SO4=1:3 (v:v)) and dried in an oven at 110 
°C for 1 hour. The cleaned glass slides were cut into 25 mm×25 mm squares using a diamond scribe. 
These squares were loaded into an electron beam deposition system (Auto500, Edwards, West Sussex, 
UK) to deposit 9 nm thick titanium at a rate of 0.2 nm/s and under a pressure of 10-6 mbar. Film 
thickness was monitored by a quartz crystal oscillator (FTM7, Edwards, West Sussex, UK).  

Other cleaned glass squares were spin coated with SPRTM 220-7.0 at 5000 rpm for 30 s, baked at 
110°C for 90 s on a hot plate and exposed for 62 s using a maskless photolithography system (SF-100, 
Intelligent Micro Patterning, Florida, USA). The resist coated slides were developed in MF-26A, 
rinsed in water and baked at 110°C for 30 min. 9 nm thick titanium was then deposited by following 
the procedure described above. Subsequently, the resist was removed using acetone to obtain 
rectangles of different size of titanium on the glass slides. The size of the titanium rectangles 
investigated in this work was 0.36 mm×0.48 mm, 0.72 mm×0.96 mm and 1.44 mm×1.92mm.  

Unless stated otherwise, NOA 13685 was spin coated on the slides with continuous and patterned 
titanium layers at a speed of 2000 rpm for 30 s. The substrates were UV-cured (2000-EC UV curing 
flood lamp, Dymax, Germany) under nitrogen dust for 10 min. Finally, a solution of 1% Teflon® AF 
1600 in FluorinertTM FC-40 was spin coated at 5000 rpm, 30 s and cured at 110°C for 30 min. 

2.2.2.  Fabrication of MCLW integrated EWOD devices 
The lower plate of EWOD devices was fabricated by depositing patterned titanium electrodes using 
the lift-off photolithography process described above. The contact pads were protected using tape. 
NOA 13685 was then spin coated at 2000 rpm, 30 s and UV-cured under nitrogen for 10 min. 
Subsequently, Teflon® AF 1600 was spin coated at 5000 rpm, 30 s and cured at 110 °C for 30 min to 
form a hydrophobic layer. The tape was then removed from the contact pads and wires were bonded 
using silver-loaded epoxy (RS components, Northamptonshire, UK). The upper plate was constructed 
in a similar way on a continuous titanium layer, but without the deposition of NOA 13685. A double-
sided adhesive with a thickness of 275 µm (3M 467MP, Viking Industrial Products Ltd, Keighley, 
UK) was used as a spacer between the upper and lower plates.  

2.3.  Instrumentation 
The optical set-up used to probe MCLW devices is shown in Figure 1 (b). A prism made of N-BK7 
(Qioptic Photonics, Denbighshire, UK) was used to couple light into the device. The angular position 
of the light source and the detector were controlled by mounting them on rails, which were connected 
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