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Abstract. The impurity induced in-gap bound state in multi-orbital superconductors is
discussed based on Bogoliubov-de Gennes equation and T -matrix approximation. It is shown
that multiple bound states appear depending on the strength of the impurity potential in the case
of unconventional s-wave (or s+−-wave) superconductivity. This result can be used to distinguish
between the conventional s-wave and unconventional s-wave states. T -matrix approximation
using a simplified model supports the numerical results obtained in the Bogoliubov-de Gennes
equation. It is shown that the T -matrix can be block diagonalized when we use orbital
representation. As a result, each orbital can make the impurity bound state independently,
leading to the multiple structure of the bound states. From the analysis of the T -matrix
approximation, we understand the reasons why the bound states always appear pair-wise at
the positions of ±ω and why there is a large asymmetry of the two peaks. We also show that
the particle-hole asymmetry of the density of states gives rise to the asymmetry with respect
to the strength of the impurity potential. The connection between the obtained results and the
iron-pnictide superconductors is also provided.

1. Introduction
The discovery of iron-based superconductors [1] shed light on the high-temperature
superconductivity in multi-orbital systems and the possibility of unconventional s-wave
superconducting states [2]. Here, unconventional s-wave superconductor means that its gap
function changes its sign but has s-wave symmetry. In multi-orbital superconductors, the gap
functions are represented by matrices which represent orbital degrees of freedom. It is very
interesting to develop a theory to characterize the unconventional s-wave superconductivity in
multi-orbital superconductors.

In iron-pnictide superconductors, the order parameter is now controversial, i.e., simple s-
wave (s++-wave) or unconventional s+−-wave superconductivity. Usually the latter is believed
to be realized next to the magnetic phase [2]. Actually it is supported by the quasi-particle
interference experiment [3]. However, the former s++-wave state is claimed based on the fact
that the superconductivity is robust against nonmagnetic impurities [4]. For this s++ state to
be stabilized, the importance of lattice and orbital degrees of freedom has been discussed [5].

Having these in mind, it is necessary to have a theory to distinguish between the two
candidates of superconductivity, i.e., s+−-wave or s++-wave. In contrast to the high-Tc cuprate
superconductivity with dx2−y2-wave, the phase sensitive experiment will be difficult in iron-
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pnictide since the s+−- and s++-wave states have the same crystallographic symmetry. However,
we noticed that the single impurity problem is suitable for distinguishing between the two states
[6]. It is well known that there is no bound state around a nonmagnetic impurity in a simple
s-wave state, while a bound state appears in unconventional superconductors, such as dx2−y2-
wave superconductivity due to the phase change of the order parameter along the quasi-particle
trajectory. However, it was not known what happens in the case of s+−-wave state.

In the previous paper [6], we studied a single-impurity problem by solving Bogoliubov-de
Gennes equation in real-space with a nonmagnetic impurity using a realistic five-orbital model
for iron-pnictides and discussed the impurity bound-states. We found that multiple bound
states appear depending on the strength of the impurity potential. Our results can be used
to distinguish between the s+−-wave and s++-wave state. Namely, if any bound state around
an nonmagnetic impurity is observed, for example, in STS experiments, we can exclude the
s++-wave state which should not give any impurity bound state.

In the next section, we summarize the essence of the previous work by pointing out several
important numerical results. In section 3, we develop T -matrix approach for the multi-orbital
superconductors and study the impurity-induced in-gap bound state in section 4.

2. Impurity bound state obtained in Bogoliubov-de Gennes equations
In the previous paper [6], we studied numerically a single-impurity by solving Bogoliubov-de
Gennes equation for five-orbital iron-pnictide model. The model and formalism are as follows.

(i) For the kinetic energy part, we use five band Hubbard model developed by Kuroki et al [7].
(ii) We construct a simple effective attractive interaction which reproduces the RPA results
obtained in the multi-orbital Hubbard model with the above kinetic energy. For this purpose,
we notice that using the orbital representation (not the band representation) and using the
real-space picture are essential for making a simple effective interaction [8]. Actually, the multi-
orbital gap functions obtained in RPA can be reproduced quite well by real-space pairings up
to the next-nearest-neighbor sites when we use the orbital representation. Accordingly, our
effective attractive interaction is up to the next-nearest-neighbor sites.
(iii) By using this simple effective interaction, we can study Bogoliubov-de Gennes equation that
is basically a real-space mean-field approximation of the BCS theory. Note that the multi-orbital
Hubbard model can not be used in the Bogoliubov-de Gennes equation, and it is essential to use
the simplified model. We solve Bogoliubov-de Gennes equation in a unit cell with up-to 28× 28
lattice sites with a single impurity at the center. We use a super-cell method which was used
before for the vortex problem in the t-J model [9].
(iv) As an impurity potential we assume

Himp =
∑
aσ

Iac
†
r0aσcr0aσ, (1)

where a represents the five orbitals and r0 is the impurity site. Generally, we can choose orbital-
dependent strengths of the impurity potential, Ia. However, in the numerical simulations we
assumed Ia = I for simplicity. Even then, there appear many interesting phenomena as shown
below.

The obtained results are summarized as follows [6].

(i) For the s+−-wave state obtained in the RPA in multi-orbital Hubbard model, we found that
the impurity-bound states near the Fermi energy become prominent when I = 1-2eV. They
give relatively sharp peaks in local density of states around the impurity, which can be directly
checked by STS experiments. We also found that bound-states appear near the gap edge when
I = 0.5eV, I = 8eV or I is negative. These results indicate that the impurity bound-state is
sensitive to the impurity strength, I. This situation is different from the d-wave case in which
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the bound state is a resonance state due to the finite density of states inside the gap and it is
sometimes difficult to be observed.
(ii) We found multiple bound states for the cases with I = 1-2eV. When we checked the
components of these bound states, we can see that the multiplicity comes from the orbital
degrees of freedom. In other words, the positions of the bound states are orbital-dependent.
(iii) The bound states always appear pair-wise at the positions of ±ω, with ω being the energy
measured from the Fermi energy. However there is a large asymmetry of these two peaks.
Depending on the parameter I and the related orbital, the wights of the two peaks change.
(iv) The impurity bound state is localized around the impurity site. The spatial extension is
about up-to the next-nearest-neighbor sites. Also the peak height oscillates as a function of the
distance from the impurity.
(v) We checked that there appears no bound state for the s++-wave case.

This kind of variety of bound-state spectra is a new aspect for the unconventional multi-
orbital superconductivity. A recent experiment of STS by Hanaguri et al [10] supports this
phenomenon. To repeat our claim, our results can be used to distinguish between the s+−-wave
and s++-wave state. Namely, if any bound state around a nonmagnetic impurity is observed,
we can exclude the s++-wave state which does not give any impurity bound states.

3. T -matrix approximation in multi-orbital superconductors
In order to understand the impurity bound states discussed in the previous section, we develop
a T -matrix approach for the multi-orbital superconductivity. In particular, we show the reason
of the appearance of the orbital-dependent multiple-peaks in the local density of states as well
as the characteristic I-dependence observed numerically in the Bogoliubov-de Gennes equation.

For the impurity potential, we use eq. (1) in which the impurity is treated as a simple
potential shift, and assume that the potential strength Ia depends on the orbital index a. This
on-site potential means that the impurity potential is short-ranged and affects only a single
site. Although this assumption is not generally correct, it will capture most of the interesting
phenomena. It is also assumed that there are no inter-orbital scatterings. This assumption
is not general. However, inter-orbital components will vanish when the impurity scattering is
isotropic and the related orbital wave functions are orthogonal to each other. Note that the
orbital representation is essential for this argument. As we will see shortly, these assumptions
give more benefits than their drawbacks.

Under these assumptions, we obtain Green’s function within T -matrix approximation [11] as[
G(k, k′, iωn)imp

]
= δk,k′

[
G(k, iωn)

]
+

[
G(k, iωn)

][
T (iωn)

][
G(k′, iωn)

]
, (2)

where
[
· · ·

]
represents a 2L × 2L matrix with L being the number of orbitals (L = 5 for the

model of iron-pnictide), and the Green’s function
[
G(k, iωn)

]
without impurity is expressed as

[
G(k, iωn)

]
=

(
Gab(k, iωn) Fab(k, iωn)
F̄ab(k, iωn) −Gab(−k,−iωn)

)
. (3)

The T -matrix is defined as[
T (iωn)

]
=

([
1
]
−

[
I
][
Gloc(iωn)

])−1[
I
]
. (4)

Here,
[
Gloc(iωn)

]
represents a local Green’s function[

Gloc(iωn)
]
≡ 1

N

∑
k

[
G(k, iωn)

]
, (5)

10th International Conference on Materials and Mechanisms of Superconductivity (M2S-X) IOP Publishing
Journal of Physics: Conference Series 449 (2013) 012018 doi:10.1088/1742-6596/449/1/012018

3



and

[
I
]
=

(
Ĩ 0

0 −Ĩ

)
, Ĩ =


I1

I2
. . .

IL

 . (6)

Although the form of T -matrix is complicated in general, there appears a large simplification
when we use the orbital representation. First, we consider the symmetry of Green’s function
Gab(k, iωn) in multi-orbital superconductors. It is determined from the symmetries of the wave
functions for a and b orbitals together with the symmetry of the lattice. Generally we find

1

N

∑
k

Gab(k, iωn) = 0 (for a ̸= b), (7)

when the basis wave functions are orthogonal to each other. This is because 1
N

∑
kGab(k, iωn)

represents a kind of on-site hopping between orbital a and b.
For the anomalous Green’s function, Fab(k, iωn), its symmetry is determined as

(symm. of Fab(k, iωn)) = (symm. of Gab(k, iωn))× (symm. of ∆bb(k)), (8)

when the symmetries of the diagonal elements of the gap functions, ∆bb(k), are specified. This
can be understood from the relation

Fab(k, iωn) = Gab(k, iωn)∆bb(k)Gbb(k, iωn) + (other terms). (9)

When ∆bb(k) has s-wave-like symmetry, eq. (8) indicates that the symmetry of Fab(k, iωn) with
respect to the direction of k is same as that of Gab(k, iωn). As a result, together with eq. (7),
we have

1

N

∑
k

Fab(k, iωn) = 0 (for a ̸= b), (10)

again when the basis wave functions are orthogonal, e.g., in the 3d five orbital model. Actually
we confirm this relation in the case of iron-pnictide superconductors.

From eqs. (7) and (10), we find that many components of
[
Gloc(iωn)

]
vanish in multi-orbital

superconductors, making the form of the T -matrix very simple. For the s+− and s++-wave
cases, we have

[
Gloc(iωn)

]
=



G11(iωn) 0 · · · F11(iωn) 0 · · ·
0 G22(iωn) · · · 0 F22(iωn) · · ·

0 0
. . . 0 0

. . .

F̄11(iωn) 0 · · · −G11(−iωn) 0 · · ·
0 F̄22(iωn) · · · 0 −G22(−iωn) · · ·

0 0
. . . 0 0

. . .


. (11)

After simple exchanges of rows and columns, we can see that the T -matrix is block diagonalized
for each orbital, i.e.,

[
T
]
(iωn) =

T̂1(iωn) 0 0

0 T̂2(iωn) 0

0 0
. . .

 , T̂a(iωn) = (1̂− ÎaĜloc
a (iωn))

−1Îa (12)
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where

Ĝloc
a (iωn) =

(
Gaa(iωn) Faa(iωn)
F̄aa(iωn) −Gaa(−iωn)

)
, Îa =

(
Ia 0
0 −Ia

)
. (13)

It is remarkable that a multi-orbital problem now becomes as simple as a single-orbital problem.
This is due to the assumptions about the impurity potential and due to the symmetry of the
Green’s functions. Equation (12) also means that the poles of T -matrix, or the impurity bound
states are determined independently for each orbital. This is the reason why the multiple bound
states (orbital dependent) are obtained numerically [6] as explained in the previous section.

4. Bound State Formation in Some Simple Models
Next question is why we have bound states for the s+−-wave in particular for I = 1-2eV.

Applying the analytic continuation iωn → ω + iδ, T -matrix for each orbital becomes

T̂a(ω) =
1

(1− Iaga(ω))(1− Iaḡa(−ω)) + I2a f̄a(ω)fa(ω)

(
1− Iaḡa(−ω) Iafa(ω)
−Iaf̄a(ω) 1− Iaga(ω)

)
=

1

Da(ω)

(
ca − ḡa(−ω) fa(ω)

−f̄a(ω) ca − ga(ω)

)
(14)

where

ga(ω) ≡ Gaa(ω + iδ), ḡa(ω) ≡ Gaa(−ω − iδ) ̸= Gaa(−ω + iδ), (15)

fa(ω) ≡ Faa(ω), ca ≡ 1/Ia, (16)

Da(ω) ≡ (ca − ga(ω))(ca − ḡa(−ω)) + f̄a(ω)fa(ω). (17)

Then, the positions of the poles are determined from zeros of Da(ω), i.e., Da(ω) = 0.
In the following, we suppress the orbital index a. g(ω) and f(ω) are represented as

g(ω) ≡ 1

N

∑
k

G(k, ω) =
1

N

∑
k

ω + ξk
(ω + iδ)2 − ξ2k − |∆k|2

, (18)

and

f(ω) ≡ 1

N

∑
k

F (k, ω) =
1

N

∑
k

∆k
(ω + iδ)2 − ξ2k − |∆k|2

. (19)

For the simple s-wave case with ∆k = ∆ constant, we have

g(ω) = ωS1(ω) + S2(ω), (20a)

f(ω) = ∆S1(ω), (20b)

with

S1(ω) =

∫
dξ N(ξ)

1

ω2 − ξ2 −∆2
, (21a)

S2(ω) =

∫
dξ N(ξ)

ξ

ω2 − ξ2 −∆2
, (21b)

where ω is assumed to be inside the gap (|ω| < ∆), and N(ξ) is the density of states. Note that
the relations S1(ω) = S1(−ω), S2(ω) = S2(−ω) hold. [In contrast, for the dx2−y2-wave case, we
have f(ω) = 0.]

In the s+−-wave case, on the other hand, the gap function ∆k has sign reversal between
Fermi surfaces, i.e., ∆k is positive at some parts on the Fermi surface and negative on other
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parts. This kind of gap function should lead to the reduction of f(ω) compared with the simple
s-wave case owing to the cancellation of the positive part and negative part. Thus, we assume

f(ω) = α∆S1(ω), (0 ≤ α < 1), (22)

for the s+−-wave case [12]. Although this is a little rough approximation, we think that it
captures the essential part of the s+−-wave case.

With this approximation, the denominator of the T -matrix becomes

D(ω) = (c− S2(ω))
2 − (ω2 − α2∆2)S1(ω)

2, (23)

with c being c = 1/I. In a simple estimation, we have

S1(ω) = − πN(0)√
∆2 − ω2

, (24)

for |ω| < ∆ and S2(ω) is nearly constant. In this case, we can see the following features of the
positions of poles in the T -matrix. (i) We have a solution at ω0 satisfying α∆ < ω0 < ∆. (ii)
Since eq. (23) is even with respect to ω, we have always solutions at ±ω0. This means that the
bound states always appear as a pair. (iii) The weights of the poles at ±ω0 are different, leading
to the asymmetry of the local density of states. These properties are observed numerically as
shown in the previous section. Note that, in the d-wave case, only one bound state appears
since the weight of one of the poles always vanishes.

Next we discuss the asymmetry with respect to the sign of I which was also observed
numerically. For this purpose we consider a special case with α = 0. In this case the two
solutions are

ω = ± ∆(c− S2)√
π2N(0)2 + (c− S2)2

. (25)

However, by checking the numerator of the T -matrix, we find that one of the bound states looses
its weight because the numerator vanishes. As a result, we only have a solution at

ω = − ∆(c− S2)√
π2N(0)2 + (c− S2)2

, (26)

which satisfies a relation ωS1(ω) = c − S2. In this sense, the case with α = 0 is rather special,
although the following argument becomes simple.

The solution of the pole of T -matrix can be obtained diagrammatically as shown in Fig. 1.
Here ωS1(ω)+S2 is plotted as a function of ω for the case with S2 > 0. The pole of the T -matrix
is given at the point where this function has a value of c as discussed above. Note that S2(ω)
vanishes when N(ξ) is an even function of ξ. In other words, S2(ω) comes from the asymmetry
of the density of states near the Fermi energy. In the iron-pnictide cases, LDA calculations show
that the density of states is larger when ε < εF. In such cases, we have S2 > 0 for |ω| < ∆,
which corresponds to the situation in Fig. 1. We can see that, when I is positive (or when c is
positive), we have a solution near ω = 0 with a large amplitude. On the other hand, when I is
negative (or when c is negative), the solution approaches to ω = ∆. In this case we can see that
the amplitude of the pole is quite small. This is the reason why there is an asymmetry with
respect to the impurity strength I.
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ω
∆−∆

cI=+0

I=+∞

I=−∞

I=−0

S(ω)

Figure 1. Schematic picture of the search for the solution of D(ω) = 0.

5. Summary and Discussions
In this paper we show that the T -matrix can be block diagonalized in the multi-orbital
superconductors when we use orbital representation. This is due to the symmetry of the normal
and anomalous Green’s functions. This result greatly simplifies the understanding of the bound
state formation in multi-orbital superconductors. Since the T -matrix for each orbital can give
poles independently, there is a chance to observe the multiple peak structure in the local density
of states. In other words, the bound-state energy can take different values for each orbital.

The story becomes more interesting when there is remaining density of state inside the gap,
i.e., the case that the gap function has nodes. Actually, the gap function with s-wave symmetry
is not necessarily being nodeless, but it is possible to be nodal. In fact, nodal s-wave gap
functions are predicted in some kind of iron-pnictide superconductors. In such cases, the bound
states usually acquire finite life-time and becomes a virtual bound state. However, when the
orbital providing the remaining density of states and that giving the bound state are different,
the bound state remains to be sharp even if there is the intrinsic in-gap density of states.

The present analysis of the T -matrix approximation is consistent with the previous numerical
study on the single impurity problem [6]. Numerical study shows that the multiple peak structure
appears in a certain parameter range with I > 0 even if Ia have a common value of I. This is
probably because the partial density of states for each orbital are different.

In the s+−-wave case, the bound states can appear because f(ω) is reduced by a factor α < 1,
compared with the simple s-wave case. The case with α = 0 is special in which only one bound
state appears due to the cancellation of the denominator and the numerator of the T -matrix.
On the other hand, for the general case with 0 < α < 1 there appear two bound states at
ω = ±ω0 for each orbital. We have also shown that the strong asymmetry with respect to I can
be well understood in the present formalism. This is due to the asymmetry of the density of
states around the Fermi energy, i.e., S2-term. We expect that the effect of S2, which is usually
neglected for simplicity, plays an important role in iron-pnictide.
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