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Abstract. The elastic wave propagation in periodic beams with the propagating disturbance is 
investigated. The effects of the disturbance on the wave propagation in periodic beams are 
studied. A propagating wave (disturbance) is incident upon the discontinuity and gives rise to 
transmitted and reflected waves. All of the transmitted and reflected waves of given flexural 
wave incident upon the beam at some location are found and superposed using the multiple 
reflections approach. The relation between the wave-field of incident wave (disturbance) and 
the wave-field of resulting waves on any segment is expressed. Much attention is devoted to 
the response in the frequency ranges with gaps in the band structure for the corresponding 
periodic beams with the disturbance. The numerical results of the frequency response function 
of finite periodic beams with propagating disturbance are presented. With the increase 
disturbance amplitude, the attenuation of the band gaps gradually decreases. The effects of the 
number of cells and material parameters on the band gap are also considered. 

1.  Introduction 
In the last decade much attention is focused on periodic flexural systems that may be idealized as 
consisting of identical elements connected end to end before [1-5]. The work on phononic band gaps 
has led to a renewed interest in elastic wave propagation in periodic materials or structures, called 
phononic crystals, which are made of two or more elastic materials with large contrast between their 
mechanical properties in recent years [6-8]. The properties of frequency band gaps in the phononic 
crystals have been studied in both theoretical predictions and experiments [9-14]. Most of the previous 
studies are focused on the band structure in periodic materials with infinite dimensions. Many 
potential applications of periodic structures may be expected such as vibration isolation technology 
and acoustic filters. 

  As we know, many practical engineering structures are conceived as assemblies of relatively 
slender elements that can be models as one-dimensional mechanical waveguides. Periodic structures 
are important both as fundamental structural elements and as simple global models for some slender 
structures, and the length of such periodic materials or structures in practical engineering structures is 
finite. Jensen [15] investigated phononic band gaps of finite one-dimensional mass-spring periodic 
structures subjected to axial loading, and indicated that the frequency response function may be 
calculated to describe the band gap characteristics of finite periodic structures. Kobayashi et al. [16] 
studied wave transmission characteristics in one-dimensional multilayered media with a finite length 
using the transform matrix method. Xiang and Shi [17] determined the band gaps in finite periodic 
beams using differential quadrature method. Yu et al. [18] investigated the propagation properties of 
flexural wave in periodic beams using the transform matrix method.  
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Although many methods may be applied to investigate the band gap of periodic structures, it is 
very difficult to study effects of lateral disturbances on wave propagation in the periodic beam using 
existing methods, such as transfer matrix method. These methods may be applied to analyze the band 
gap characteristic of periodic structure, however, the relation between the wave-field of incident wave 
(disturbance) and the wave-field of resulting waves on any segment can not be expressed. It is not 
convenient for their promising applications in vibration isolation and other engineering application. 
Further investigation on the wave propagation in finite dimensional structures with one or more lateral 
disturbance is of great importance. Particularly, Ungar [5] first proposed the multiple reflections 
approach. The approach can set up the relation between the wave-field of incident wave and the wave-
field of resulting waves on any segment. However, the approach does not be explained in detail, and 
the validity of the multi-reflection approach is also not proved numerically. 

To our knowledge, no work on effects of lateral disturbances on wave propagation in periodic 
beams structures has been reported. The present paper aims to analyze effects of lateral disturbances 
on wave propagation in periodic beams from theoretical as well as numerical points of view. In 
Section 2, periodic binary beams are adopted, and the results of injecting a propagating wave are 
concerned. All of the transmitted and reflected waves of flexural wave incident upon the beam at some 
specified location are found and superposed using the multi-reflection approach. In Section 3, the 
relation of the wave-field on adjacent identical elements is given, comparing the propagating constant 
calculated by the relation with calculated by the transfer matrix method, iteration times of wave-field 
can be determined. In Section 4, the influences of the number of cells and material parameters on the 
band gap of periodic beams are analyzed. Frequency response of periodic beams can be changed by 
tuning the disturbance. The conclusions from this study are listed in Section 5. From the result, we can 
observe some interesting and valuable physical phenomena.Another section of your paper 

2.  Wave reflection and transmission at discontinuities 

As shown in Fig. 1, a periodic binary beam consists of an infinite repetition of alternating segments A  
with length 1a and segments B with length 2a . So the periodic beam’s lattice constant is 1 2a a a= + . In 
other word, the whole beam is split into successive unit cells. Each cell contains two segments with 
length 1a and 2a . The uniform Euler-Bernoulli beam model with constant cross-section is used. 

 

 

 

 

 

 

2.1 Multiple reflections between two discontinuities 

As shown in Fig. 1, let an external disturbance generate a harmonic wave ( , )inw x t  on segment (0) 
and propagating in the positive x  direction. The positive-going wave produced will give rise to 
transmitted and reflected waves when it impinges on discontinuity (1). As the beginning to dealing 
with more complicated case, one may first study the wave-field set up between two discontinuities due 
to multiple reflections. The incident wave is described by 

2a1a  

Fig. 1 Designation used for wave multiple-reflection and transmission analysis of a periodic binary beam with a propagating 
disturbance. 
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1 1( ) exp( i)in inw x A k x= − ,                                                             (1) 

where 24
1 1 1( ) /( )k S EIρ ω= , E  denotes Young’s modulus, I the area moment of inertia, ρ is the 

density and S  the cross-sectional area, 1inA is the wave amplitude. 
For simplifying the analysis, the present section deals with the hypothetical case where near-field 

effects are neglected. Then at the discontinuity (1), a transmitted component 1( )trw x  and a reflected 
component 1( )rew x  are generated 

1 1 2( ) exp( i)tr trw x A k x= − ,                                                             (2) 

1 1 1 1 2 1 1( ) exp( i) exp(2 i) exp( i)re re rew x A k x k x A k xτη= − = ,                                   (3) 

where 24
2 2 2( ) /( )k S EIρ ω= , 2 1x x l a= − − , 1exp( 2 i)k lτ = − , 1 1exp( 2 i)k aη = − , 1 1re inA RA= , 

1 1tr inA TA= , R  and T  are the transmission and reflection coefficients at the discontinuity (1) of the 
segment (0), l  is the distance between the origin of the x  system and the discontinuity (0). 

The reflected portion 1( )rew x  will travel in the negative x  direction until it is incident upon 
discontinuity (0), and there will be transmitted and reflected. The reflected portion 

2 11 1 1 2 1 1 11 1( ) exp( i) exp(2 i)exp( 2 i) exp( i)re re rew x A k x k x k x A k xη= − − = − ,                       (4) 
where 1x x l= − , 11 1re reA RA= . 

The reflected waves 2 ( )rew x  will again travel in the positive x  direction, and will suffer the same 
situation as the initial incident waves. So two set of waves will be result in the region between the two 
continuities. One consists of an infinite number of portions traveling in the positive x  direction; the 
other consists of a same number traveling in the negative x  direction. Multiple reflections produce a 
total wave (0) ( )naw x+  and a total wave (0) ( )naw x−  on segment (0) by superposition, where 

(0) 2 4 2
1 1 1 1 1 1( ) exp( i) exp( i) exp( i)na in in inw x A k x R A k x R A k xη η+ = − + − + − +L                             

(0)
1 1 1 12

1 exp( i) exp( i)
1 in nA k x A k x

R η
= − = −

−
,                                          (5) 

(0) 3 2 5 3
1 1 1 1 1 1( ) exp( i) exp( i) exp( i)na in in inw x R A k x R A k x R A k xτη τη τη− = + + +L                          

(0)
1 1 2 12 exp( i) exp( i)

1 in n
R A k x A k x

R
τη
η

= =
−

,                                            (6) 

where the superscript (0) is added to denote the initial approximations. Periodic beam structures is 
considered, so the modulus of 2R η  is less than 1.  

2.2 Unidirectional propagation 

  Above Section neglected transmitted waves across the boundaries of segment (0) in Fig. 1. It is 
difficult to account for all of the transmitted waves of two directions using the method of multiple 
reflections at the same time, so wave-field will be first set up when wave transmission takes place in 
only one coordinate direction. 
  If waves are transmitted in only rightward direction, then wave-field established on segment (0) 

(0) ( )naw x+  will be transmitted past discontinuity (1), and the total transmission will suffer multiple 

reflections between discontinuity (1) and (2). Multiple reflections produce a total wave (0) ( )nbw x+  and a 

total wave (0) ( )nbw x−  on segment (1) by superposition, where 
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(0) 2 4 2
1 2 1 1 2 1 1 22 2 2( ) exp( i) exp( i) exp( i)

1 1 1nb in in in
T T Tw x A k x R A k x R A k x
R R R

γ γ
η η η+ = − + − + − +

− − −
L    

(0)
1 2 1 22 2

1

exp( i) exp( i)
(1 )(1 ) in n

T A k x B k x
R Rη γ

= − = −
− −

,                             (7) 

(0) 3
1 1 1 2 1 1 1 22 2( ) exp( i) exp( i)

1 1nb in in
T Tw x R A k x R A k x
R R

τ η γτ η
η η− = + +

− −
L                          

   (0)
1 1 1 2 2 22 2

1

exp( i) exp( i)
(1 )(1 ) in n

TR A k x B k x
R R

τ η
η γ

= =
− −

,                           (8) 

where 1 2exp( 2 i)k lτ = − , 1 2exp( 2 i)k aη = − , 2 2exp( 2 i)k aγ = − , 1R  is the reflection coefficient of the 
segment (1). 

Similarly, if waves are transmitted in only leftward direction, then wave-field established on 
segment (0) (0) ( )naw x−  will be transmitted past discontinuity (0), and the total transmission will suffer 
multiple reflections between discontinuity (-1) and (0). Multiple reflections produce a total wave 

(0)
( 1) ( )n bw x− −  and a total wave (0)

( 1) ( )n bw x− +  on segment (-1) by superposition, where 

(0) (0)
( 1) in1 2 ( 1)2 22 2

1

( ) exp( i) exp( i)
(1 )(1 )n b n

TRw x A k x B k x
R R

τη
η γ− − −= =

− −
,                          (9) 

(0) 1 (0)
( 1) 1 1 in1 2 ( 1)1 22 2

1

( ) exp( i) exp( i)
(1 )(1 )n b n

TRw x R A k x B k x
R R

τητ γ
η γ

−
− + −= − = −

− −
.                  (10) 

So wave-field on any segment (n) can also be established.  

2.3 Bidirectional propagation 

  Here wave propagation in both directions is considered by means of an iteration procedure. In this 
procedure, each step deals with propagation in only one direction and gives a correction term that, in 
essence, accounts for the propagation direction not considered in the proceeding step [5]. Above 
Section give initial approximations that neglect the effects of propagation in the leftward direction on 
each segment when waves are transmitted in only rightward direction. The problem is taken into 
account subsequently.  

The first correction terms on segment (0) are due to the leftward propagating components on all 
segments to the right of the segment (0) when only leftward propagation is permitted. (0) ( )nbw x−  on 
segment (1) will be transmitted past discontinuity (1), and the total transmission will suffer multiple 
reflections between discontinuity (0) and (1). Multiple reflections produce a total wave on segment (0); 

(0)
( 1) ( )n aw x+ −  on segment (2) will be transmitted past discontinuity (2), and the total transmission will 

suffer multiple reflections between discontinuity (1) and (2), then will be transmitted past 
discontinuity (1), and the total transmission will suffer multiple reflections between discontinuity (0) 
and (1). Multiple reflections produce a total wave on segment (0). By the same token, the first 
correction terms (1) ( )naw x−  and (1) ( )naw x+  can be obtained by superposing the waves resulting on 
segment (0) 

( )(1) (0) (0) 2 (0)
2 1 ( 1)2 1 ( 1)2 1( ) exp( i)na n n nw x PB PP A P PB k x− + += + + +L ,                                (11) 

  ( )(1) 1 (0) (0) 2 (0)
2 1 ( 1)2 1 ( 1)2 1( ) exp( i)na n n nw x R PB PP A P PB k xτ −

+ + += + + + −L ,                          (12) 
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where 2
1 /(1 )T R Pη− = ， 2

1 1/(1 )T R Pγ− = , number of term in series equals to the number of 
segment to the right of the segment (0). The first correction terms on any segment can also be obtained 
in the same way. 

Similar to the above considered case, the second correction terms on a given segment can be 
obtained. The second correction terms on segment (0) are due to the rightward propagating 
components on all segments to the left of the segment (0). (2) ( )naw x+  and (2) ( )naw x−  can be obtained by 
superposing the waves resulting on segment (0).  

( )(2) (1) (1) 2 (1)
( 1)1 1 ( 1)1 1 ( 2)1 1( ) exp( i)na n n nw x PB PP A P PB k x+ − − −= + + + −L ,                             (13) 

( )(2) (1) (1) 2 (1)
( 1)1 1 ( 1)1 1 ( 2)1 1( ) exp( i)na n n nw x R PB PP A P PB k xτη− − − −= + + +L ,                          (14) 

where number of term in series equals to the number of segment to the left of the segment (0). The 
second correction terms on any segment can also be obtained in the same way. 
The third and the fourth correction terms can also be obtained by means of this iteration procedure. 
The third correction terms on a given segment are due to the leftward propagating components of the 
second correction terms on all segments to the right of the segment when only leftward propagation is 
permitted. The fourth correction terms on a given segment are due to the rightward propagating 
components of the third correction terms on all segments to the left of the segment. The wave-field on 
a given segment can be obtained by superposing the initial approximation and the various corrections. 
For example, the wave-field on segment (0) can be obtained 

( )
1

0

( ) ( ) exp( i)i
na na na

i

w x w x W k x
∞

+ + +
=

= = −∑ ,       ( )

0

( ) ( )i
na na

i

w x w x
∞

− −
=

= ∑ ,               (15a) 

where number of term in series is determined by iteration times.  
Similarly, we have 

( )
( 1) ( 1) ( 1) 2

0
( ) ( ) exp( i)i

n b n b n b
i

w x w x W k x
∞

− + − + − +
=

= = −∑ ,     ( )
( 1) ( 1)

0
( ) ( )i

n b n b
i

w x w x
∞

− − − −
=

=∑ ,        (15b) 

 ( )
2

0

( ) ( ) exp( i)i
nb nb nb

i

w x w x W k x
∞

+ + +
=

= = −∑ ,      ( )

0

( ) ( )i
nb nb

i

w x w x
∞

− −
=

= ∑ .                   (15c) 

The wave-field on any segment can also be obtained. So the amplitudes of the wave-field resulting 
from the incident propagating wave can be determined. 

3．The determination of Iteration times 
Iteration times may be determined by calculating the ratio of the wave-field on adjacent cells in the 

next step. Considering Eq. (15), we have 

2 1exp( ( )i)nb nbW k l a W+ += − + ,      ( 1) 2 1 ( 1)exp( ( )i)n b n bW k l a a W− + − += − − + ,            (16) 
where the symbols with the bar denote components referred the local coordinate systems originating at 
the left ends of the segments. The Bloch theorem states that ( 1)exp(i )nb n bW a Wμ+ − += . So we have the 
following relation of the wave-field on adjacent cells  

2 ( 1)exp(i ) exp( i)nb n bW a k a Wμ+ − += .                                                (17a) 
Similarly, we can get 

1 ( 1)exp(i ) exp( i)na n aW a k a Wμ+ − += .                                                (17b) 
Comparing the propagating constantμ calculated by Eq. (17) with μ  calculated by the transfer 

matrix method, iteration times of Eq. (15) can be determined within the desired accuracy [5].  

4. Numerical examples and discussions 
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From this section, numerical calculations of band structures for finite periodic beams with epoxy as 
material A and aluminum as material B are performed. Material constants used in the calculation are 
mainly listed in Table 1. The lattice constant is chosen to be 2ma = , and 1 2 1ma a= = . The beam 

cross-sectional area is 3 25.969 10 mA −= ×  and the second area moment of inertia is 
5 42.701 10 mI −= × for segments A and B . The distance between the origin of the x  system and the 

discontinuity (0) is 3l a= .  

Table 1  
     Material constants 

Materials      Yong’s modulus E ( Gpa )        Density ρ ( 3kg / m )
Epoxy (A)             4.35                       1180  
Aluminum (B)         77.56                       2730   

4.1 Band gap of periodic beam 

The band structure of an infinite periodic beam is depicted in Fig. 2. The shadow areas are the first 
two band gaps.. It is repeated here for the sake of completeness and comparison. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

4.2 Multi-reflection approach 

4.2.1 The number of cells   In this section, the frequency response on different segment of the beam is 
given to describe the band gap characteristics of finite periodic beams. In Fig. 3, Frequency response 
functions curves of finite periodic beams considering the propagating disturbance are given. Curves 
are shown for M=6, 10 and 15 (the number of cell). 
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Fig. 2 Band structure (dispersion relationship) for an infinite periodic beam. (a) Real wave vector. (b) The absolute value of the 
imaginary part of complex wave vector (propagating constant). 
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  In Fig. 3a, 3b and 3e, we can see obviously that the band gaps of a finite periodic beam is more 
agreement with the band gaps of infinite periodic beam for larger M . However, the first band gap is 
not obvious. We can also observe from Fig. 3c, 3d and 3e that the longer the distance from the 
segment (0) (propagating disturbance), the more obvious the band gaps become. It is shown from Fig. 
3a and 3c that the band gap characteristics can not be found because the distance from the segment (0) 

Fig. 3 Frequency response of periodic beams. (a) M=6, segment (4), Iteration times N=5, (b) M=10, segment (12), N=5, (c) 
M=15, segment (4), N=9, (d) M=15, segment (12), N=9, (e) M=15, segment (22), N=9. 
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(propagating disturbance) is too short. So the longer the distance from disturbance, the more obvious 
the band gaps become for periodic structures with a lateral disturbance force.  

 

4.2.2 Effect of the material parameters   In what follows, parametric studies are undertaken to 
investigate the effect of the ratio /A Bρ ρ and /A BE E  on the band gaps in periodic beams with 
disturbance. Frequency response on segment (22) of periodic beams is considered. M=15, N=9. The 
material A is assumed to be epoxy, however, the density of material B varies with the change of 
ratio /A Bρ ρ . All other parameters are taken the same as above. The effect of /A Bρ ρ  on the second 
band gap is plotted in Fig. 4. The bandwidth of the first band gap is too small to consider. The 
beginning frequency of the second band gap increases and the cutoff frequency decreases with the 
increasing of the ratio /A Bρ ρ . Now the Young’s modulus of the beam is considered. We consider the 
case in which the material A is epoxy. The density of material B varies with the change of ratio /A BE E . 
All other parameters are taken the same as above. The effect of /A BE E  on the second band gap is 
plotted in Fig. 5. It can be observed from Fig. 5 that both the beginning frequency and cutoff 
frequency of the second band gap are decrease with the increasing of the ratio /A BE E . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.3 Effect of the disturbance   Fig. 6 shows the frequency responses for the periodic beams with 
different the propagating disturbance. The material constants used in the calculation are the same as 
those in Table 1. Although the band gap characteristics can not be changed by tuning the disturbance, 
it can be seen that the attenuation of the band gaps gradually decreases with the increase disturbance 
amplitude.  
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Fig. 4 Effect of the ratio /A Bρ ρ  on the second band gap. 
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Fig. 5 Effect of the ratio /A BE E  on the second band gap. 
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5. Conclusions 
The elastic wave propagation in finite periodic beams considering the propagating disturbance is 
studied theoretically as well as numerically. The effects of the disturbance on the wave propagation in 
periodic beams are considered. Multi-reflection method is used to analyze the band gap characteristics 
of the periodic beam with one or more lateral disturbance. It is very difficult to study effects of the 
disturbance on the wave propagation in periodic beams using transfer matrix method. The validity of 
the multi-reflection is proved. The amplitudes of the wave-field on any segment resulting from a given 
incident amplitude can be determined. It is also not given by transfer matrix method. Expression is 
presented from which one may evaluate the propagation constant, and then study wave propagation 
characteristics of a finite periodic beam considering a propagating disturbance. Much attention is 
devoted to the response in the frequency ranges with gaps in the band structure for the corresponding 
periodic beams. From the results, the following conclusions can be drawn: 
  (1) The effects of the disturbance on the wave propagation in periodic beams is analyzed, and a 
relation between the amplitude of the incident wave and the resulting amplitudes of any segment is 
established using multi-reflection method, and these can not be given using the transfer matrix method. 
  (2) For the finite periodic beam, band gap characteristic are not obvious when the distance between 
the segment and the disturbance is short. It is shown that the influence of disturbance on the band gaps 
of the periodic beam is focus on the areas in the vicinity. Band gap characteristic will disappear 
because of the influence of external disturbance. At same time, the longer the distance from the 
disturbance, the more obvious the band gaps become, and the band gaps of the finite periodic beam is 
more agreement with the band gaps of the infinite periodic beam for larger M . The validity of the 
multi-reflection is proved. 

(3) Frequency response of finite periodic beams can be changed by tuning the disturbance. With the 
increase disturbance amplitude, the attenuation of the band gaps gradually decreases.  
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