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Abstract. In molecular biology, the elastic rod is wound on the elliptic cylinder can be used as 

a simplified model of the DNA and protein molecules, in which the elliptic cylinder is used to 

simulate the heterogeneity of the protein molecules. The problem can be described as a long 

thin weightless rod constrained, by suitable distributed forces, to lie on an elliptic cylinder 

while being held by end tension and twisting moment. The Cosserat director theory is used to 

formulate this problem. More complicated shaped are possible and special attention is given to 

localized configurations described by homoclinic and heteroclinic orbits of the oscillator. The 

analytical results of homoclinic and heteroclinic boundary conditions are obtained from Padé 

approximation. By using the analytical results of homoclinic and heteroclinic solution, both 

internal force and 3D configuration are discussed in detail. The results of analytical and 

numerical integration are compared to verify the effectiveness and feasibility of the analytical 

method. 

1.  Introduction 

In molecular biology, wounded elastic rod in a cylinder can be used as a simplified model of the 

combination of DNA and protein molecules. This model also has a wide range of applications in other 

areas, for example, considering drill strings constrained to lies within a cylindrical bore hole [1, 2] in 

the oil drilling industry. Taking the heterogeneity of the protein molecules into account, we can 

simplify the model into elastic rod constrained to lie on an elliptic cylinder, where non-circular cross-

section of elliptic cylinder is used to simulate protein molecules 

The localized buckling of long, thin, initially straight, elastic rods subject to end forces and 

moments for the case of rods with non-symmetric cross section was studied numerically [3]. The circle 

of homoclinic orbits present in the symmetric case breaks up and four isolated primary homoclinic 

orbits were left in breaking the rotational symmetry by considering rods with different bending 

stiffnesses in two orthogonal directions [4]. The heteroclinic saddle connections are found to play an 

important role in the post-buckling behavior by defining critical loads at which a straight isotropic rod 

may coil up into a helix [5]. The anisotropic rod constrained to a cylinder was analyzed by numerical 

methods [6]. And same results are similar with the isotropic rod constrained to the plane[7]. 

In the construction of the homoclinic and heteroclinic orbits in nonlinear dynamical systems, 

numerical simulations are used in most cases. While on contrast the analytical approach. The 
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analytical approaches are rare for constructing the homoclinic and heteroclinic orbits in nonlinear 

dynamical systems, and numerical simulations are frequently used. The Padé approximants were 

successfully used for the homoclinic orbits of two-dimensional axisymmetric breathers by Vakakis [8]. 

The quasi-Padé approximants were used to construct the homoclinic orbits in nonlinear Schrodinger 

equation system by Mikhlin [9]. The analytic homoclinic orbits, in the non-autonomous Duffing 

equation and the Van Der Pol-Duffing equation with weakly coupled nonlinear oscillators, were 

computed in Ref. [10]. The Padé approximation is extended to be used to construct the homoclinic and 

heteroclinic orbits in the asymmetric systems, which to improve the accuracy of the threshold for the 

onset of chaos [11-13]. However, the problem of effective analytic approximate of the heteroclinic 

orbits is difficult and it is not solved up to now. 

Attention is also given to localized rod solutions corresponding to homoclinic orbits of the 

oscillator. But the heteroclinic orbits are special phenomenon which is not presented in the free rod 

case. They play an important role in the behavior of solutions by defining critical loads at which a 

straight rod may coil up into a helix. According to the radius of the elliptic cylinder, the heteroclinic 

orbits occur. 

2.  Model 

The equilibrium equations of the constrained rod are given by[14] 
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where n  and f  are internal forces and moments along the rod respectively, and 1 2 3{ , , }d d d  is the 

director frame. The vector 3d  is taken to be tangent to the rod, where the vector function r  describes 

the centerline of the rod relative to some fixed co-ordinate system to be specified later. And the 

directors 1d  and 2d  are chosen along the principal axes of the second moment of area in the normal 

cross-section of the rod. 

The generalized strain vector 

 1 1 2 2 3 3 ,u u d u d u d    (2) 

satisfies the generalized stresses and strains 
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where 1B  and 2B are the bending stiffnesses about 1d  and 2d , respectively, and C  is the torsional 

stiffness. 

Considering 1 2 3{ , , }e e e  is a fixed right-handed orthonormal co-ordinate system, we introduce the 

position vector of the elliptic cylindrical coordinates ( , , )R z  based on the cylindrical coordinate 

 1 2 3cos sinr R e R e ze    , (4) 

which meet 
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where a  is the semi-mahor axis of unit elliptical column in 
1e  direction and b  is the semi-minor axis 

in 
2e  direction. And circumferential angle of unit cylinder 

0  is introduced. After that, elliptical 

coordinate system { , , }r ze e e  can be written in the following form, 
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where 
re  is normal to the cylinder, e  is the circumferential direction, and 

ze  is the direction of the 

axis of the elliptical column. And there are 
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which also meets the following changes 
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Figure 1 elliptic cylindrical coordinate 

 

Define r r z zn n e n e n e    , r r z zm m e m e m e    , i ir r i iz zd d e d e d e    ( 1,2,3)i  . From 

3r d  we have 
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from the components of 3d , the following equations (10) can be obtained. The external normal 

reaction force can be written as rf fe . 
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Constraint condition is that along the centerline of the elliptical column conserved 
3 0rr d  , 

namely 
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Considering n f , equation is obtained, 
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Introduce a new function h  which is defined by 
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and the transformation is, 
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That is 0rn   and 0zn  . Considering the side force, zn T  is obtained. And let 0rn  , h  can be 

determined in the equation(13). Then moment equation is 

 3 3 .rm d n hd e      (15) 

The director frame 1 2 3{ , , }d d d  can be expressed in the following form with Euler angle ,  , 

 

 
Figure 2 The angles used to describe the constrained rod 
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where   measures deflection angle from centerline of the rod to centerline of elliptic cylinder, and   

is internal twist angle of 
1d  turns around 

3d . If rod is not internal twist, then 0  . 
1d  is in tangent 

plane of elliptic cylinder and 
2d  is the corresponding normal line. 

The following Eular angle expressions can be had by taking equation (16) into original equation (1), 
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Introducing the dimensionless variable, 
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where T  and M  are the applied loads. According to the derivation process in front, 1 3, 1x h x   can 

be gained. Finally, the system (1) can be rewritten as the following dimensionless equation 
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where 

 2 2

1 22

, 1, 1,
B BM M

m r r
B C BB T

        (20) 

are all dimensionless parameters. 

Boundary constraint equation (11) may also be written as 
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Here, the solutions of equation (19) can be traced, which satisfies the condition (21). And from the 

third equation of (1) we can obtain, 
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In the coordinate system 
1 2 3{ , , }e e e  there are 
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Two integral can be obtained from system (19). 

 2

1 2 6 constant.rx m x     (24) 

This integral equation represents the axial moment equilibrium. The second integral derivated from the 

“Hamiltonian” 
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In circular cross section, the third integral is provided by conservative torque 3u , 

 3 5 6sin cos constant.x x      (26) 

3.   Analysis on the circular cross section of rod 

System (19) is integrable which is made from the three integral in circular cross section mentioned 

above, and after simplification the following differential equations can be obtained, 

 21
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Boundary conditions are 1 2,K K  and 3K , which is the value of first integral 1 2,I I  and 3I  respectively. 

In arbitrary parameter values condition, the system (19) has trivial solution, 

 2 4 5 60, 0, 0, 1, 0, 1 ,x x x x           (30) 

meanwhile 0h  . At the same time, according to the boundary conditions, system (19) meet the 

symmetry 
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Considering the homoclinic boundary conditions, make the values of 1K  and 3K  into 
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And 2K  is a free parameter which is used to adjust the energy H  of energy balance oscillator. We 

also have 
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Equation (27) contains rich physical phenomena. Consider the initial conditions of  

(0) 0, (0) 0   , through numerical analysis, we can see that equation has two critical points 

respectively, which will produce the phenomenon of heteroclinic orbits, when 0 0.9648r   and 

1.9093 2r  . Taking 0.8r   for example, the system (27) has two critical load 1 1.1177cm   and 

1 1.9499cm  . The second case is analyzed in this paper and its potential energy curves and phase 

diagram are shown in Figure 3(a). Most of the existing literature only simulated one homoclinic orbit 

of system (27) using numerical method and do not analyze the phenomenon of heteroclinic orbits in 

detail. In the next section, we will apply the analytical method that calculated analytical heteroclinic 

orbits in two typical critical stats. Heteroclinic solutions and its corresponding 3D configuration and 

internal force diagrams are obtained respectively. 

Let 

 cos .p   (35) 

When 0    , the original equation (27) can be simplified as follows, 
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Differentiating both ends of the equation, we can get a second-order differential equation 
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When 0    , sin 1 p    . Simplified equation also can be obtained by using similar solution 

method, so the detailed solving procedure is not explained again. 

4.  Padé approximation 

Extended Padé approximation method has been successfully used to solve the heteroclinic orbits of 

asymmetric system. The extended Padé approximation is implemented here. Set the series solution of 

equation (37) to 

 0 1

0

( ) n

n

n

x t a a s a s
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

    . (38) 

Initial point values of the track are represented as 0 1( , )a a , and 0 1,a a  are not zero at the same time, 

 0 1(0) , (0) .x a x a   (39) 

Other parameters can be expressed as a function of 0 1, , ,a a r m : 
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4.1.  Homoclinic and heteroclinic orbits 

Transformed system (37) has homoclinic and heteroclinic orbits at same time, when 

10.8, 1.94988cr m  . Potential energy curve and phase diagram are shown in Figure 3(b), wherein 

solid lines indicate the graphics of system (37) at 0     and dashed lines at 0    . The 

results at 0     are analyzed here. Phase diagram has one homoclinic orbit and two heteroclinic 

orbits which are symmetric about the p -axis but not symmetric about the p -axis. As shown that 1H  

and 2H  are two saddle points, and O  is center. When s , point on homoclinic orbits move 

along 1 2H AH  and finally tend to reach saddle point 1H , and point on heteroclinic orbits movement 

along 1 1 2H B H  and 2 2 1H B H  respectively and finally tend to reach the corresponding saddle point 1H  

and 2H ; when s , along the opposite direction to the other saddle point. 
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Figure 3 Potential energy curve and phase diagram 
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Take an initial vales are maximum point at p -axis, which meet its tangent perpendicular to the p -

axis, namely 

 
2 0.a   (41) 

Form of homoclinic solution is  

 
2 3 4

0 1 2 3 4

1 2 3

2 3

4

4

( )
.

(1 )

t t t
P

t t t
A

t

t    

   

   


   
 (42) 

All the coefficients of 
nPA  are obtained by comparing the 

nPA  and Taylor expansion solution, namely 

 
0

.n

n n

n

a t PA




  (43) 

Then consider the convergence condition: 

 .lim
x

HPA


  (44) 

The other parameters can be expressed by the algebraic polynomial as 
0 1,a a  either. And used the 

convergence condition, the initial value can be obtained respectively. We obtain the initial values 

0 0.310214a  , and fourth-order approximation homoclinic solution, 

 
2 4

2 4

0.310214 0.257087 0.0365497

1 0.347095 0.0409154
p

s s

s s

 

 
 . (45) 

Take initial vales at the maximum point of p -axis, which also meet its tangent perpendicular to the 

p -axis, namely 

 
3 0.a   (46) 

Form of heteroclinic solution is  

 
2 3 4

0 1 2 3 4

2 3 4

1 2 3 4

( e e e e )
,

(1 e e e e )

t t t t

t t t t
QPA

   

   

    

   

   


   
 (47) 

where   is etermined as the coefficient to be solved. Calculation process is resembled to precious 

solution. Convergence condition (44) is considered, and then initial value 

1 0.0145213, 0.170252a     and heteroclinic solution can be obtained 

 

0.412616 0.825232 1.23785 1.65046

0.412616 0.825232 1.23785 1.65046

0.412616 0.825232

0.8933 4.06384 3.89703 1.61965 0.268084

1 4.06384 3.89703 1.61965 0.268084

1 6.04159 14.5366 15.

,

158

s s s s

s s s s

s s

e e e e

e e e
p

p

e

e e





   

   








 1.23785 1.65046

0.412616 0.825232 1.23785 1.65046

8 3.33217

1 6.04002 14.6258 16.5536 3 73018
.

.

s s

s s s s

e e

e e e e



   

(48) 

The calculated position of the saddle point is 0.8933 and 1 which are identical with exact values. 

Compare present solution of homoclinic and heteroclinic solutions about arc length s and homoclinic 

and heteroclinic orbits with numerical solution as shown in Figure 4 - 6. 
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(a) 1 0a                        (b) 1 0a   

Figure 4 heteroclinic solution 
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Figure 5 homoclinic solution       Figure 6 homoclinic and heteroclinic orbits 

 

The rod of internal force and 3D configuration can be obtained respectively. When s , 

homoclinic orbit appears,   is gradually decreased from 1.25538 to 0.466162 and then remains 

constant. In the corresponding 3D configuration, rotation angle, beginning with the location of the 

initial point 0.315416, gradually increases to 1.10463, then spiral extends to the right endsand hang 

with this angle, while the state of rod remain stretching. The axial force of rod has maximum value 

located at initial point and point to outer cylinder. As s , axial force gradually decreases to zero. 

As shown in Figure 7, rotational angle of the rod increases to the ends and spiral extending with 

constant angle. When heteroclinic orbits appear, taking 1 0a   for example. When s ,   is 

gradually changed from 0.300549 to 0.466162 and then remains constant; when s ,   is 

gradually changed from 0.300549 to 0 and also remains constant. In the corresponding 3D 

configuration, rotation angle, beginning with the location of the initial point 1.27025, gradually 

decreases to 1.10463, while state remains stretching. Rotation angle gradually increase to 2 , 

namely changed to horizontally extending. The axial force of rod has maximum value in the location 

of initial point and point to inner cylinder.  As s , axial force of rod change to point to outer 

cylinder, and then decreases to zero; as s , axial force also has a related change and finally 

reach to 0.0181901. As shown in Figure 8, at one end rotational angle of the rod increases and spiral 

extending with constant angle, at other end it extends horizontally. When 1 0a  , the process is similar 

to the above. 
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Figure 7 internal force and 3D configuration (homoclinic solution) 
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Figure 8 internal force and 3D configuration (heteroclinic solution 1 0a  ) 
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Figure 9 internal force and 3D configuration (heteroclinic solution 1 0a  ) 

 

5.  Conclusions 

This paper presents the general formulation of a twisted rod constrained to lie on an elliptic cylinder. 

On the statics of twisted rods, much headway has been made by dynamical systems analogy, and 

homoclinic and heteroclinic orbits are analyzed to describe localized buckling modes of long rods. The 

strategy presented in this work is generally applied and accepted, so it would be possible to apply the 

present method to simulate heterogeneity of the protein molecules with more complicated nonlinearity 

which will be the topic for further research.  

By developing the Padé approximation method, the homoclinic and heteroclinic orbits of nonlinear 

irrational equations can be constructed, which would expand the ranges of the applicable systems, and 

also can be applied to improve the accuracy of the result. It is feasible to apply this method on the 

other complex systems; furthermore, by using the combination of high order Melnikov method and 

improved Padé approximation method, the accuracy of calculation can be improved even further. 

Conclusions 
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