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Abstract. Some aspects of research wok on the mechanics of thin elastic rod based on 
Kirchhoff-Cosserat’s model were summarized. The analytical mechanics with arc-coordinate s 
and time t as double variables was established to formulate the motion of elastic rod. In 
stability analysis the difference and relationship between Lyapunov’s stability and Euler’s 
stability were discussed. The first approximate stability was determined by the characteristic 
equation with double eigenvalues in different domains, one of which can be determined by 
geometric conditions in static analysis. The Lyapunov’s and Euler’s stability conditions of the 
rod in space domain are the necessary conditions of Lyapunov’s stability in time domain. As 
applications of the Kirchhoff’s rod in molecular biology, the explanations of nucleosome 
structure and the chromosome coiling of DNA were given. Concerning the application in 
engineering the shape of a hanging rod under gravity and the coiling and stretching process of 
an extendable space mast were discussed. The motion of an axial moving beam with constant 
velocity and axial extensive force was discussed as an example of exact Cosserat’s rod, the 
special case of small deformation is the Timoshenko’s beam. 

1.  Introduction 
The mechanics of a thin-long elastic rod has a practical background in molecular biology and 
engineering. The traditional model of a beam using Cartesian coordinates of centerline cannot be 
competent in analysis of a thin-long rod with large deformation. The Kirchhoff’s kinetic analogy 
provides a different model of the rod by rotation of cross section along the centerline, and the attitude 
angles of cross section are used as unknown functions of arc-coordinates s . In analysis of dynamics 
the time variable is added and the model becomes a system with double independent variables s  and 
t . The Cosserat’s model is an exacter model, which abandons the hypothesis of inextensible and 
unshearable characters, and is closer to a real rod in practice. The Kirchhoff-Cosserat’s model is 
suitable particularly to the large deformation of thin-long elastic rod, such as DNA, fiber, sub-ocean 
cable, oil-well drill string and other thin-long projects. In application of Kirchhoff-Cosserat’s model 
all approaches of dynamics, such as the dynamics of rigid bodies, the analytical mechanics, the theory 
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of stability and others, can be used into the mechanics of elastic rod. In this paper some aspects of 
research on Kirchhoff-Cosserat’s model are summarized. 

2.  Analytical mechanics of elastic rod [1~6] 
As basic definitions in analytical mechanics of elastic rod, the virtual displacement of cross section of 
the rod is defined as: The imagined infinitesimal displacement of cross section, consistent with 
constraint, and irrelevant to the arc-coordinates and time. The principle of D’Alembert-Lagrange is 
defined as: For an elastic rod under ideal bilateral constraint, the true motion different to any possible 
motion consistent with constraint, that its virtual work for arbitrary virtual displacement is zero. The 
principle of minimal potential energy is used to take place of Hamilton principle, and the density of 
potential energy Γ  of deformation of the rod plays a role of Lagrange’s function in analytical statics.  
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When the rod under constraint condition ( ), 0=�C q q , the Lagrange’s multiplier Λ  can be used to 

compose a revised Lagrange’s function Γ Γ= + ⋅� Λ C . The Lagrange’s equations are derived as 
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In dynamic analysis it is necessary to establish an analytical dynamics with double arguments s  and 
t . Using the Lagrange’s function Λ TΓ= − , composed of densities of potential energy Γ  and 
kinetic energy T , the Lagrange’s equations and the Nielson’s equations can be derived as 
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3.  Stability and vibration [7~17] 
When the Lyapunov’s stability theory is applied to analyze the equilibrium of elastic rod some unusual 
results can be obtained. As an example the equilibrium of an axial compressed elastic rod is stable by 
Lyapunov’s stability definition (Fig.1a), and is unstable when the rod is extended (Fig.1b). The results 
contradict to the traditional knowledge of Euler’s buckling concept of a compressed bar evidently. The 
different conclusions are caused by different definitions of stability. According to the Lyapunov’s 
stability theory, the equilibrium is stable when the perturbed centerline is restricted in a small 
neighborhood of the unperturbed straight line. Nevertheless, from the viewpoint of Euler’s stability, 
when the perturbation equations have nontrivial solution satisfying the boundary conditions on both 
ends, the equilibrium is unstable and the buckling occurs. The Lyapunov’s stability is a concept of 
stability with respect to the initial perturbation, but the perturbed centerline is under constraints on 
both ends. When all boundary conditions on both ends are satisfied, the corresponding load is the 
Euler’s critical load. Therefore the Euler’s load can be calculated in analysis of Lyapunov’s stability.  

 

    
(a)  Compressed rod (stable)       (b)  Extended rod (unstable) 
 

  Figure 1.  Perturbed centerlines of compressed and extended rod 
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In stability analysis the linearized perturbed equations has double arguments s  and t , it follows that 
the characteristic equation has double eigenvalues λ  and w  corresponding to different variables. 
When the Lyapunov’s stability conditions in statics are satisfied, the eigenvalue in space domain 

ikλ = ±  can be determined by boundary conditions on both ends. Then the characteristic equation 
contains only one unknown eigenvalue w , which determines the stability of equilibrium in time 
domain.  
As an example we consider an elastic rod with circular cross section and length L . The dynamical 
equations of a Kirchhoff’s rod with the Euler’s angles ϕϑψ ,,  and internal forces ( 1, 2,3)iF i =  as 
unknown variables permit special solutions, corresponding to the helical equilibrium  

0 0 1 2 0 0 3 0 0, , 0, 0, sin , coss F F F F Fϑ ϑ ψ ω φ ϑ ϑ= = = = = =                 (3.1) 
where 0F  is the axial force required by the helical equilibrium 
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where E , I are Young’s modulus and inertial moment of the cross section. The characteristic 
equation of the linearized perturbed equations with perturbations ( )1, 2, ,6ix i = "  can be derived as 

4 2( ) ( ) ( ) 0a w b w cλ λ λ+ + =                              (3.3) 
where ( )c λ  is defined as 
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The characteristic equation in space domain ( ) 0c λ =  has pure imaginary roots ki±=λ , where 
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Therefore the helical equilibrium is stable by Lyapunov’s definition. The boundary conditions 
( ) (0)i ix L x=  on both ends of the rod require 02 πk n Lω= ( )1, 2,n = " , then the Euler’s critical 

load can be derived from Eqs.(3.5) and (3.2) as 
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After substitution of the determined eigenvalue ikλ = ±  into Eq.(3.3), one of the pure root 
conditions of eigenvalue w  is ( ) 0c λ > . Comparing it to the characteristic equation ( ) 0c λ = , it 
follows that the axial force should be smaller than the Euler’s critical load. Thus the Lyapunov’s and 
Euler’s stability conditions of the helical rod in space domain are the necessary conditions of 
Lyapunov’s stability in time domain. When all stability conditions are satisfied letting iw μ= ± , we 
obtain the angular frequency μ  of lateral vibration of the helical rod as 
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4.  Application in molecular biology [18~20] 
4.1  Explanation of the nucleosome structure of DNA 
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As the structural unit of chromatin the nucleosome is composed of DNA and histone core HO with a 
small H1-histone (Fig.2, Cited from http://www.cvh.cc/onews.asp?id=29713). The DNA wraps around 
histones 1 and 3/4 circle and forms a nucleosome structure. Many nucleosomes are linked together like 
a beads. The nucleosome structure can be simplified as a thin elastic rod constrained by a cylinder 
with radius R  and locked by a small bar at the entrance of DNA (Fig.3). 
In order to explain the structure of nucleosome, at first we consider the equilibrium of the thin rod 
acted by the electric force ef  and contact force cf  with constraint conditions  

                       0
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ϑϑ ϑ ψ ϕ ω′ ′= = =                               (4.1) 
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Figure 2. Nucleosome structure     Figure 3. Thin rod constrained by cylinder    

 
The internal forces and the contact forces can be solved as 
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where A EI=   and 0C GI=  are the bending and twisting stiffness of the rod. Considering the 
equilibrium of the cylinder HO wrapped by the rod we obtain the contact range of DNA  
                      [ ]1 1, 4 [102.5 , 617.5 ]πψ ψ− = D D                              (4.3) 
After numerical calculation the range is about 1.43 circles (Fig.4). At last we consider the equilibrium 
of the H1-histone, which is simplified as a small bar in contact with the cylinder HO and DNA. The 
incline angle β  of the bar can be obtained as 

( )
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3 4

0

cos tantan
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μ ϑ
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+ −
                              (4.4) 

where 1c ef fμ = − . When the electric force is balanced by the contact force, 0μ = , and 0β = , the 
H1 bar is erect along ζ -axis (Fig.5).  

            
Figure 4. Contact range of DNA     Figure 5. Equilibrium of H1-bar 
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4.2  Explanation of chromosome coiling of DNA 
The formation of DNA in chromatin is coiled in helical state with different order. At first the 
nucleosome structure folds the DNA to a helix with diameter 11 nm, after that the helix twins itself in 
higher order coiling with diameter 30 nm into the chromatin (Fig.6, Cited from http://www. cchem. 
berkeley.edu/jehgrp/yms/). In order to explain the coiling process, a physical experiment was made by 
Thompson and Champney using a rubber rod under axial tension force 0F  and twist 0M . When the 
force 0F  increases the initial straight equilibrium becomes unstable and transforms to a helical 
equilibrium. When 0F  increases further the straight helical rod becomes unstable and twins to a helix 
with higher order. In explanation of the phenomenon we write the equilibrium equations of a 
Kirchhoff’s rod under axial tension and twist, and uncouple it to a nonlinear equation of ϑ  

2
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Where 02p F A=  and 0l M A= . The trivial solution 0 0ϑ =  or π  of equation 0)( 0 =ϑQ  

corresponds to a straight rod. In addition, when 22 1p l >  a nontrivial solution exists as  

( ) 1 42
0 2 arccos 2 p lϑ

−⎡ ⎤= ⎢ ⎥⎣ ⎦
                             (4.6) 

The solution (4.6) describes a helical equilibrium with pitch angle 0π 2 ϑ− , which decreases with 

increase of 22 p l . The stability analysis confirms that 0ϑ  has a bifurcation point of 22 1p l = , 
after which the stable straight state becomes unstable and a stable helical state exists (Fig.7). When 

0F  increases further the straight thin helical rod becomes unstable and twins to a coiling state of 2-nd 

order. The bifurcation point occurs on 22 1p l =�� , where 02p F A= �� , 0l M A=� � , and A�  is an 
equivalent bending stiffness of a thin helical rod 
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Continuing the similar process the forming of different order helix in chromosome coiling can be 
explained qualitatively. 
 

                

0ϑ

22p l
0 1 2 3 4

π 2

π 6

π 3

→

↑

 
Figure 6. Chromosome coiling of DNA          Figure 7. Bifurcation of 0ϑ  vs 22 p l  

5.  Application in engineering [21~24] 
5.1 Shape of hanging rod under gravity  
The shape of a flexible cord under gravity was expressed by hyperbolic function in seventeen century 
as a successful application of mathematical calculus. The well-known curve of catenary can be utilized 
in engineering as an approximate model of hanging cable or pipe. When the hanging cable has large 
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cross section the influence or bending rigidity cannot be neglected. The equilibrium equation of 
Kirchhoff’s rod under gravity can be written with consideration of the bending rigidity 
          ( ) 0cos sin 0EI Sgs Fϑ ρ ϑ ϑ′′ + − =                   (5.1) 
Where ϑ  is the incline angle of the tangent of centerline to the horizon, ρ  and S  are the density 
and area of cross section (Fig.8). Using the perturbation method with a small parameter 

2EI mglε =  and taking the traditional solution of catenary as zero-th approximate solution, where 
l  is the length of the rod, we obtain the solution corrected by the bending stiffness  
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where 0Sg Fβ ρ= . Introduce a function ( )xφ β   
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The shape of the hanging rod can be derived in analytical form as 
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Figure 8. The hanging rod under gravity 

 
5.2 Coiling and stretching of extendable space mast 
The coiling and stretching process of the main element of extendable space mast in astronautic 
technique can be simplified by the motion of an elastic rod under unilateral constraint of a cylinder 
(Fig.9). The large deformation from a straight rod to a flat helical rod can be analyzed by the 
Kirchhoff’s model with consideration of distributed contact force. In order to simplify the problem we 
assume that the rod maintains helical shape with unchanged radius R  as the result of cylindrical 
constraint, and only the variation of angle ϑ  and twisting of the rod are considered. In discussion of 
coiling process the inertial effect can be neglected approximately when the deformation is slow 
enough. The necessary external forces and torques in coiling process can be determined by some first 
integrals as   

( ) ( ) 2
2

1
cos sin

A
F

R
λ

ϑ ϑ ϑ
−

= ,  ( ) ( )2 2sin cos sinAM
R
ϑϑ λ ϑ ϑ= +       (5.5) 

The stretching of the rod in space is a fast process, and the inertial effect should be considered. Based 
on the hypothesis of maintaining helical shape, the dynamical equations can be simplified to a 
nonlinear equation of ( )tϑ  

( ) 2 0gϑ ϑ ϑ− =�� � , ( ) ( )2cos sin 1 cosg ϑ ε ϑ ϑ ϑ= +                  (5.6) 

where ( )22a Rε = , a  is the diameter of the rod. Eq.(5.6) permits a first integral to determine the 
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phase trajectories in phase plane ( ),ϑ ϑ�  (Fig.9) 

( ) ( ) }2 2 4 4
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4
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� �                (5.7) 

Thus the stretching velocity ( )v sζ  and the time strt  of the duration from a flat helix to a straight 
rod are obtained in analytical form 
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Figure 9. Coiling and stretching of a rod    Figure 9. Phase trajectories in ( ),ϑ ϑ�  plane 

6.  Exact Cosserat’s model [25~28] 
The inextensible and unshearable hypotheses of Kirchhoff’s model are not adaptable to the real soft 
materials. The exact Cosserat’s model takes the extension of centerline and the shear deformation of 
cross section in consideration, and is closer to a real elastic rod in practice. As the result of axial 
extension the arc-coordinate s  of an arbitrary point P  in centerline is changed by ( )31s s ε∗ = + , 

where 3ε  is the normal strain of centerline. The shear strains 1 2,ε ε  of cross section causes an 
additional rotation of the tangent vector of centerline, which deviates from the normal axis of cross 
section. Therefore the curvature of centerline is determined not only by the rigid rotation of cross 
section, as well as the shear deformation. The internal force and torque are proportional to the strains 
and curvature-twist respectively. The dynamical equations of the Cosserat’s rod can be established 
with Cardan’s angles , ,ψ ϑ ϕ  and deflections iw ( )1, 2,3i =  as unknown variables. The 
configuration of the rod after deformation is determined by adding the deflections to the initial shape. 
As an example we consider the motion of an axial moving beam with constant velocity 0v  and axial 
extensive force 0F  (Fig.10). Since the mass of beam flows along the centerline, the Euler’s concept 
of velocity field is applied in mathematic formulation. As a special case of Cosserat’s model with 
small deformation, the dynamical equation of an axial moving Timoshenko’s beam can be written 
directly 

4 4 4 2 4 2 4 2

1 2 3 4 5 6 7 84 3 2 2 2 3 4 2 0w w w w w w w wa a a a a a a a
t t s t s t t s t s s s

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
     (6.1) 

where the complex variable 1 2iw w w= +  is applied to describe the three-dimensional deformation of 
the beam. In the stability analysis of quasi-stationary state of the beam the critical axial velocity before 
buckling can be derived as 
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Figure 10. The axial moving beam 
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