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Abstract. We review and clarify some cases of geometrical CP violation, the framework
of spontaneous CP violation through complex phases with values that are independent of
parameters of the potential. We present a flavour model based on ∆(27) featuring spontaneous
CP violation, that can reproduce all quark masses and mixing data. The scalar sector of the
model has exotic properties that can be tested at the LHC.

The work summarised here is mostly based on [1] and [2], which include more complete
references that we omit here due to space constraints.

The origin of CP violation is an open question in particle physics. In the Standard Model
(SM), CP is violated through complex Yukawa couplings and this violation appears in charged
weak interactions through the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In beyond the
SM theories one can explore the origin of CP violation, and a very interesting framework is
spontaneous CP violation: in such a framework, CP is a symmetry of the Lagrangian and CP
violation arises through complex vacuum expectation values (VEVs) of Higgs multiplets Hi.
There is an important subtlety that should be noted. Even with complex VEVs, only when the
unitary transformation U acting on the Hi and relating the VEV to its complex conjugate

〈Hi〉 −→ 〈Hi〉∗ = Uij〈Hj〉 , (1)

is not a symmetry of the Lagrangian does CP violation occur. If U is a symmetry of the
Lagrangian, CP is conserved even though the VEVs are complex [3].

1. Geometrical CP Violation
Here we discuss the particular case where the phases that appear in the scalar VEVs are
determined independently of the arbitrary parameters of the scalar potential. These are referred
to as calculable phases, and the framework as geometrical CP violation (GCPV). GCPV requires
at least three Higgs doublets and a non-Abelian symmetry [3]. ∆(27) (a discrete subgroup
of SU(3)) was the first group found to produce such calculable phases [3]. In [4] this was
generalised to larger groups obtaining the same calculable phases and more recently, several
new phase solutions were advanced and expressed in terms of the number of scalars and the
group [1]. We will briefly review the framework, explaining the origin and clarifying some of the
possible generalisations in some detail. The notation follows mostly from [1], with ηN ≡ e2iπ/N
and 〈Hi〉 ≡ veiαi (the assumption that the VEVs have the same magnitude is justified by the
respective potentials favouring this type of minima in very general cases).
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Figure 1. The equilateral triangle shape associated with the minimising solution for V3.

The only phase dependence in the renormalisable ∆(27) potential for a scalar triplet can be
written as

H2
1 (H2H3)

† + c.p. = v4(eiA1 + eiA2 + eiA3) , (2)

where c.p. represents the cyclic permutations and the phases Ai are A1 = 2α1 − α2 − α3 and
permuting, A2 = −α1 + 2α2 − α3, A3 = −α1 − α2 + 2α3. Due to a combination of the cyclic
properties of the group and invariance under the gauge group,

∑
Ai = 0 must be verified [1]. If

we constrain ourselves to renormalisable potentials this invariant is the only phase dependence
in the potential (with its hermitian conjugate, h.c.), and the minimum of the scalar potential
depends on

V3 = (eiA1 + eiA2 + eiA3) + h.c. , (3)

If V3 appears in the potential with negative coefficient, V3 should be maximised corresponding
to a contribution of +6 for Ai = 0. Otherwise, V3 should be minimised by the phases - but a
contribution of −6 is not allowed, as Ai = π would violate

∑
Ai = 0. Fig. 1 illustrates how the

minima with Ai = ±2π/3 corresponds to a contribution of −3. The ∆(27) GCPV VEVs like
(η∓13 , 1, 1) (corresponding to α1 = ∓2π/3, α2 = α3 = 0) are obtained from such configurations.
The same solutions can be obtained in larger groups containing ∆(27) [4].

∆(27) is the semi-direct product of cyclic groups C3 n (C3 × C3), and by considering
analogous semi-direct products it is possible to find new GCPV candidates - although in
general only by going to non-renormalisable potentials. A direct generalisation involves groups
CN n (CN × ...×CN ) with N − 1 factors of CN inside the brackets. The properties of the group
lead to the lowest order phase dependent invariant being a direct generalisation of Eq.(2)

HN−1
1 (H2(...)HN )† + c.p. . (4)

The order of such invariants is 2(N − 1) and already for N = 4 this is of order 6 and non-
renormalisable. For even number of scalars N the situation is arguably less interesting, as
Ai = π is an allowed solution to minimise the invariant (for N even it verifies

∑
Ai = 0 as

required). But with an odd number of scalars N one has e.g. for N = 5

V5 = (eiA1 + eiA2 + eiA3 + eiA4 + eiA5) + h.c. , (5)

in this particular case with A1 = 4α1 −α2 −α3 −α4 −α5. As was the case with N = 3, Ai = π
is not allowed due to the requirement

∑
Ai = 0. It turns out that to minimise the generalised

VN the requirement is [1]

Ai = ±N − 1

2

2π

N
, (6)

corresponding to adjacent sides of a regular N -sided polygon, as seen in Fig. 2 for N = 5. This
can be obtained e.g. with

α1 = ∓N − 1

2

2π

N
, (7)
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Figure 2. The pentagon shape associated with the minimising solution for V5.

and the remaining phases vanishing. The VEVs are then of the type

v
(
η
∓(N−1)/2
N , 1, (...), 1

)
. (8)

If we consider instead the more general groups CN n (Cn× ...×Cn) with N − 1 factors of Cn
inside the brackets, there are some cases of interest: (1) n = kN (an integer multiple); (2) n is
not a multiple but shares a prime factor with N ; (3) n and N share no prime factors. The first
case is the most straightforward - depending on the irreducible representation (irrep) chosen one
can obtain the same GCPV VEVs that are available with k = 1, or alternatively the choice of
irrep forbids the invariant in Eq.(4), leaving as lowest order phase dependent invariant(

HN−1
1 (H2(...)HN )†

)k
+ c.p. , (9)

of order 2k(N − 1). The solutions to Eq.(6) for odd N are then changed from Eq.(8) to [1]

v

(
η
∓ (2l−1)N−1

2
kN , 1, (...), 1

)
for l ≤ k . (10)

For a discussion of the second case (which always applies when n and N are both even) we
refer the interested reader to [1]. The third case merits some detailed discussion here - due to
invariance under the gauge group and as there is no shared prime factor, the relevant phase
dependent invariant is (

H1H
†
2

)n
+ c.p. , (11)

which differs from the previously featured invariants in an important way: each individual
term no longer has all the Hi in it. For N > 3 this means that there can be independent

invariants
(
H1H

†
3

)n
+ c.p., and

(
H1H

†
4

)n
+ c.p. and so on. For odd N there are (N − 1)/2

independent invariants when the h.c. is considered, for N even there is one unpaired invariant
that is its own h.c. so the total is N/2. It is interesting that for n = 2 this class of invariants
appears at order 4 and they are therefore renormalisable. In the case N = 3 and n = 2
(which corresponds to the group A4), if we want to minimise the phase-dependent invariant

I32 =
(
H1H

†
2

)2
+
(
H2H

†
3

)2
+
(
H3H

†
1

)2
+ h.c., then the phases α1 = 0, α2 = −2π/6 and

α3 = −4π/6, of VEV (1, η−16 , η−26 ), result in the Ai = 2π/3 solution depicted in Fig. 1, but
note the respective U from Eq.(1) leaves I32 invariant apart from a global phase. Indeed this

is the case for any n and odd N , the invariant INn =
(
H1H

†
2

)n
+ c.p. + h.c. is minimised by
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nαi = (−i+ 1)N−12
2π
N or by nαi = (i− 1)N−12

2π
N (starting from nα1 = 0). This can be obtained

by solving the equations nα1−nα2 = ±N−1
2

2π
N or equivalently by picturing the regular polygon

with N sides, and assigning consecutive nαi either clockwise or anti-clockwise always leaving
(N − 1)/2 sides between consecutive nαi (and also between the last nαN and nα1 = 0). In
any case, the U relating such a solution to its conjugate only shifts each term of the invariant
INn by the global phase ±2nαN (the h.c. is shifted by ∓2nαN ). In addition, for odd N > 3,
there are multiple invariants appearing at order 2n with different phase dependences, say Ai,
Bi etc. It is not possible to have Ai = ±N−1

2
2π
N simultaneously with Bi = ±N−1

2
2π
N (and not

with all Bi = 0 either). This is the case already for N = 5, where one can take A1 = n(α1−α2)
and B1 = n(α1 − α3), with the respective invariants being renormalisable only for n = 2. As
noted above, αi = (−i + 1)4π/5n minimises the Ai invariant (which corresponds to I5n) with
all Ai = 4π/5. But this type of phase solution simultaneously corresponds to all Bi = 8π/5
which does not extremise the Bi invariant (indeed each Bi can be expressed as a sum of two
Ai, e.g. B1 = A1 + A2). For even N there are some differences: while Ai = π may not be
compatible with Bi = π, it is compatible with Bi = 0. For N = 4, A1 = n(α1 − α2), and from
the self-conjugate invariant the dependence is B1 = n(α1 − α3); then Ai = π can be obtained
from e.g. α1,3 = π/2n = −α2,4 which also gives Bi = 0 which is the desired minimising solution
if the Bi invariant has a negative coefficient. For N = 6, A1 = n(α1 − α2), B1 = n(α1 − α3),
and from the self-conjugate invariant the dependence is C1 = n(α1−α4); then Ai = Ci = π and
Bi = 0 are obtained for e.g. α1,3,5 = π/2n = −α2,4,6 and this is a minimising solution as long as
the coefficients of the Ai, Bi and Ci invariants are respectively positive, negative and positive.
Once again, the U associated to the solution only shifts the invariant by a global phase.

2. Fermion mixing with geometrical CP violation
When fermions are added to the framework of GCPV it is not trivial to construct viable models.
Leading order structures were suggested in [4]. Calculable phases are also robust when the
potential includes non-renormalisable terms [5]. Based on these results, a minimal model of
GCPV fitting all data was proposed in [2]. The group employed is ∆(27) and a minimal amount
of additional matter is added.

The three Higgs doublets, Hi, transform as a ∆(27) triplet assigned to a 301 irrep (in this
section we denote them with a lower index). Their hermitian conjugates H†i transform as the
conjugate representation 302 (in this section we denote them with an upper index). The relevant
generators of the group will be denoted as c (cyclic permutation) and d (diagonal phases).
They act on the irreps as c(H1, H2, H3) → (H2, H3, H1), c(H

†1, H†2, H†3) → (H†2, H†3, H†1),
and d(H1, H2, H3) → (H1, ωH2, ω

2H3), d(H†1, H†2, H†3) → (H†1, ω2H†2, ωH†3). ω ≡ ei2π/3

corresponds to the η3 used in section 1. There are nine singlet irreps 1ij , where the subscript
{ij} denotes how they transform under the generators c1ij = ωi1ij , d1ij = ωj1ij . Further
details about ∆(27) can be found in the references of [2].

From the solution in Fig. 1 we can have a complex VEV of the type:

〈Hi〉 = v(ω, 1, 1) . (12)

This VEV necessarily violates CP, as the corresponding U (see Eq. (1)) does not leave the
potential invariant. The full scalar potential is presented later as we first focus on the Yukawa
interactions of the quarks. The possible Yukawa contractions in this framework were considered
briefly in [3] and in more detail in [4]: in order to make invariant Yukawa terms some of
the quarks must transform as triplet or anti-triplet under ∆(27). We write the invariants
symbolically as QHid

c and QH†iuc (without explicit SU(2) indices). Q are the left-handed
quark doublets and uc, dc are the up and down right-handed singlets. If Qi is a 301 we would
necessarily require the dci to transform also as a 301, conversely if Qi is a 302, u

ci is forced to be
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a 302. At least one sector has a leading order Yukawa structure given by the ∆(27) invariant
30i ⊗ 30i ⊗ 30i. With the symmetrical VEV in Eq. (12), this structure leads to a mass matrix
with degenerate quark masses [3] and so the conclusion is that Q cannot be assigned as a triplet
or an anti-triplet. We choose instead uc and dc as ∆(27) triplets so that QHid

cj and QH†iucj
are invariant with Q as singlets. Both sectors then have Yukawas from the ∆(27) invariants
1ij ⊗ (301 ⊗ 302) [4]. Although 301 ⊗ 302 results in 9 distinct singlets, the group properties are
such that any 301 ⊗ 302 → 1ij with i 6= 0 explicitly involves powers of ω (complex), so not all
possibilities are allowed by CP invariance of the Lagrangian. To have renormalisable Yukawa
interactions we assign Q1, Q2 and Q3 each as one of the three 10i singlets. The possibilities are
assigning all three Q in the same singlet irrep, or assigning two in the same, or all three Q in
different irreps. All three structures lead to mass matrices that have a special structure defined
by rows. When Q is a 100, 101 or 102, the respective Hid

cj or H†iucj product is 100, 102 or 101
respectively, which essentially amounts to a shift in the position of the ω in the mass matrix.
More explicitly the corresponding down mass matrix looks like:

M̃d = v

y1ω y1 y1
y2 y2ω y2
y3 y3 y3ω

 (13)

and the associated up quark mass matrix looks very similar with ω2 instead of ω and the second
and third rows swapped. If instead Q1, Q2, and Q3 are assigned to 100, 100, and 102 respectively,
we get:

Md = v

y1ω y1 y1
y2ω y2 y2
y3 y3 y3ω

 (14)

We recall that due to the explicit CP invariance of the Lagrangian the couplings are real and
the phase appears only through the VEV. Consider then the hermitian matrices MM †:

M̃dM̃
†
d = 3v2

y21 0 0
0 y22 0
0 0 y23

 (15)

MdM
†
d = 3v2

 y21 y1y2 0
y1y2 y22 0

0 0 y23

 (16)

The vanishing off-diagonal entries are a consequence of 1 + ω + ω2 = 0. The determinant of

MdM
†
d is zero but it has two non-vanishing masses, and the choice with all generations of Q in

the same singlet irrep (not shown) leads to a rank 1 structure with a single non-vanishing mass.
It is apparent that these hermitian structures are real. To obtain a viable CKM matrix we need
to generate additional off-diagonal terms and to somehow preserve the complex phase. Off-
diagonal terms appear in MM † when rows have the ω in the same column, and the minimal way
to get them is to add a gauge singlet scalar φ that is a non-trivial ∆(27) singlet. Without loss
of generality we place φ in the irrep 101, enabling a new non-renormalisable Yukawa coefficient
populating each row from QHid

cjφ. For Q1, Q2, and Q3 in 100, 100, and 102 respectively, we
add to Md the corresponding matrix:

Mφ = v

 yφ1 yφ1ω yφ1
yφ2 yφ2ω yφ2
yφ3ω yφ3 yφ3

 (17)
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From the interference MdM
†
φ + MφM

†
d we obtain the required additional off-diagonal entries.

The effect of MφM
†
φ can be absorbed within the existing structure of MdM

†
d . We now want a

complex phase in the CKM matrix, from complex MM †. The minimal possibility is to consider
non-renormalisable interactions with higher powers of H e.g. QHid

cj(HkH
†l). It turns out that

the non-trivial structure extracted from such interactions is

MH = v

 yH1 yH1ω
2 yH1ω

2

yH2 yH2ω
2 yH2ω

2

yH3ω
2 yH3ω

2 yH3

 (18)

where the identity 1+ω+ω2 = 0 was used and the existing coefficients were redefined to absorb

similar entries in the mass matrix. From the interference MdM
†
H +MHM

†
d we obtain phases in

MM † that enable complex CKM elements, MφM
†
H +MHM

†
φ and MHM

†
H give structures that

do not qualitatively change the analysis. Mφ and MH are the minimal mandatory additions
needed for a perfect fit to the existing data. The Lagrangian (showing the ∆(27) indices) is:

L = Q
(
H†iucj +Hid

cj +Hid
cjφ+Hid

cj(HkH
†l)
)
. (19)

We found that the only choice that favourably accounts for the precision flavour data is Q1,

Q2 and Q3 as 100, 100 and 102 respectively. In the up quark sector, MuM
†
u can be considered

diagonal, and we need only one additional non-renormalisable Yukawa in order to generate
the small up quark mass (recall the determinant of the renormalisable structure is zero for
this choice of irreps). In Fig. 3 we show that this choice can successfully reproduce the
Wolfenstein parameters, and one can also compare the model values (in the right column) with
the experimental values:

λexp = 0.22535± 0.00065 λ = 0.22534,

Aexp = 0.811
+0.022
−0.012

A = 0.810,

ρ̄ exp = 0.131
+0.026
−0.013

ρ̄ = 0.129,

η̄ exp = 0.345
+0.013
−0.014

η̄ = 0.344.

(20)

We present now the full scalar potential. It contains the ∆(27) triplet Hi but also φ which
we introduced to obtain desirable Yukawa structures:

V (H,φ) =m2
1

[
H1H

†
1

]
+m2

2φφ
† +m3(φ

3 + h.c.) (21)

+ λ1

[
(H1H

†
1)2
]

+ λ2

[
H1H

†
1H2H

†
2

]
+ λ3

[
H1H

†
2H1H

†
3 + h.c.

]
(22)

+ λ4(φφ
†)2 + λ5

[
φ(H1H

†
2) + h.c.

]
+ λ6

[
φφ(H1H

†
3) + h.c.

]
, (23)

where the coefficients are real, and the square brackets represent also the cyclic permutations
on the ∆(27) indices which we do not explicitly show. While the geometrical phase solution in
Eq. (12) is not affected by φφ†, it is only when λ5 and λ6 are small that it holds. One can add
a Z4 symmetry acting on φ to trivially enforce these couplings to vanish (in this case Eq.(17)
arises from a φ4 insertion instead of φ, all conclusions remaining unchanged).

Following the minimisation of the potential and determination of the mass eigenvalues, we
observed these features (for illustration we display only the CP-even scalar components): (i)
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Figure 3. The experimental spread of the Wolfenstein parameters λ, A, η̄ and ρ̄ around their
central values. Crosses denote our model values.

The φ field is much heavier (beyond 1 TeV) and decouples from the SU(2) doublets. More
specifically, the mass of φ is determined by λ{4,5,6}, while those of h{a,b,c} are controlled by
λ{1,2,3}. (ii) The physical scalars ha, hb and hc mix in a very specific way (see [2] and references
therein): the scalar mass squared matrix having the structureA B B

B C D
B D C

 , (24)

leading to one physical scalar ha that is orthogonal to the other scalars and having no haV V -
type gauge couplings (V = W,Z). The Yukawa couplings of ha to up- and down-type quarks
are strongly suppressed except for the hact and hauc couplings which are about 0.45. The other
physical scalars, hb and hc, have nearly SM-like gauge and Yukawa couplings.

Depending on the scalar potential couplings, two viable scenarios are identified: (I) There is
only one light scalar, hb, assuming the role of the SM-like Higgs found near 125 GeV, with all
other scalars beyond the current exclusion range of the LHC. This is a decoupling limit which
reproduces almost SM-like scalar structure. (II) A scenario with richer collider consequences is
possible when the exotic scalar ha is light enough to be produced at the LHC e.g. through hauc
or decays of tops or heavy scalars. Under the reasonable assumption that mφ > 1 TeV or so we
can obtain the analytic relations:

m2
ha =

2

3

(
2λ1v

2 − 2λ2v
2 + 3λ3v

2
)
, (25)

m2
hc/b

=
1

6

(
5λ1v

2 + 4λ2v
2 ±
√

3
[
v4
(
3λ21 + 8λ1λ2

− 16λ1λ3 + 16λ22 − 64λ2λ3 + 64λ23
)] 1

2
)
. (26)

The λi can be adjusted to give mha around the mass 125 GeV of the SM-like hb, with hc heavier
than 600 GeV. In this case, there can be a spectacular decay channel through ha → χaZ, if
mχa ∼ 20 GeV, with the pseudo-scalar χa then decaying to charged leptons of different flavours
(e.g. µτ) and the Z boson decaying to leptons, as in Fig. (4). There is enough freedom in the
lepton sector to boost coupling of χa, which may have a sizeable branching ratio in this channel,
but a more specific prediction requires a detailed numerical study of the lepton Yukawa sector.

Although in both scenarios (I) and (II) there are a few heavy scalars above the current LHC
limit of 650 GeV or so, their relative heaviness compared to the SM Higgs is not a result of fine-
tuning of parameters as for each heavy state there is a reasonably independent combination of
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FIG. 1. a) Possible decay channel of t into muon and tau via ha; b) Possible decay channel of ha into three muons and one tau.Figure 4. Example of a decay mode of the exotic scalar ha that can be tested at the LHC.

λi-type couplings which simply has to be set to a higher value (we have verified this numerically).
If the LHC bound goes up, we have to accordingly raise the maximum allowed value of some λi
beyond π e.g. up to maximum allowed value of 2π to go over 1 TeV. A final consequence worth
pointing out is that the additional scalar states below 1 TeV in both scenarios (I) and (II), all
coupling to SM gauge bosons, would affect the energy dependence of longitudinal gauge boson
scattering. This energy dependence might be different from the SM expectation due to the extra
scalars, whose quantitative impact may be probed at the high luminosity option of the LHC
depending on their masses and couplings.

3. Summary
We have reviewed and clarified the framework of geometrical CP violation in the context of multi-
Higgs models. We then reviewed the realisation of spontaneous CP violation of geometrical origin
in a minimal ∆(27) flavour model that reproduces the CKM mixing matrix. This scenario is
quite falsifiable, as only two choices broadly worked, out of which only one set of representations
fits the precision of flavour data. The scalar sector of this model retains some symmetry of the
flavour group and this can lead to exotic scalar decays into multi-lepton of different flavours,
which would be a smoking gun signal of the model that is testable at the LHC.
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