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Abstract. I shortly review the impact of the most recent neutrino oscillation data on our
attempts to construct a realistic model for neutrino masses and mixing angles. Models based
on anarchy and its variants remain an open possibility, reinforced by the latest experimental
findings. Many models based on discrete symmetries no longer work in their simplest realizations.
I illustrate several proposals that can rescue discrete symmetries. In particular I discuss the
possibility of combining discrete flavour symmetries and CP , and I describe a recently proposed
symmetry breaking pattern that allows to predict all mixing parameters, angles and phases, in
terms of a single real unknown. I analyze several explicit examples of this construction, providing
new realistic mixing patterns.

1. Introduction
The discovery of neutrino oscillations brought lot of excitement in particle physics. It still
represents the first and, in some respect, unique evidence of new physics. The smallness
of neutrino masses evokes the breaking of the total lepton number, thus making neutrinos
a privileged observatory to investigate energy scales that would otherwise be unaccessible.
Moreover lepton mixing properties together with those of the quark sector can shed a new light
on the flavour mystery. Perhaps form this information we can identify some principle allowing
us to describe in a more economic and rational way the multitude of Yukawa interactions needed
to account for fermion masses and mixing angles.

The early data on neutrino oscillations were compatible with a maximal atmospheric mixing
angle and a vanishing reactor angle. The whole mixing pattern was consistent with the very
simple ansatz [1]:

sin2 θ23 =
1

2
, sin2 θ12 =

1

3
, sin2 θ13 = 0 . (1)

Despite the large experimental errors affecting, until recently, both the atmospheric and the
reactor mixing angles, this circumstance was taken by many of us as evidence for a symmetry
principle beyond the data. Discrete symmetries based on small groups such as S3, A4 [2] and
S4 [3] were soon recognized at the basis of efficient mechanisms able to reproduce the tribimaximal
(TB) pattern in eq. (1). There was also a certain confidence that deviations from the TB pattern
had to be small, since the solar mixing angle was soon measured to a very good precision, about
a couple of degrees, in impressive agreement with eq. (1). On this basis we could hope that
the TB ansatz were correct to few degrees. We have now evidence at the 10σ level that θ13
is non-vanishing [4]. Its size is comparable to that of the Cabibbo angle. We also have a first
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hint for a non-maximal atmospheric mixing angle. Results from a recent global fit to neutrino
oscillations are reported in table 1.

sin2 θ12 0.30± 0.013

sin2 θ23 0.41+0.037
−0.025 ⊕ 0.59+0.021

−0.022
sin2 θ13 0.023± 0.0023
∆m2

21 (7.50± 0.185)× 10−5 eV 2

∆m2
31(N) (2.47+0.069

−0.067)× 10−3 eV 2

∆m2
31(I) −(2.43+0.042

−0.065)× 10−3 eV 2

Table 1. Results of a global fit to neutrino oscillations, from ref. [5] There are two best fit values
for the atmospheric mixing angle θ23 due to the presence of two minima in the χ2 function. The
labels N and I refer to normal and inverted ordering, respectively.

There are still several open questions concerning neutrino properties. We do not know whether
the total lepton number L is violated or not, whether the neutrino mass ordering is normal or
inverted. The Dirac phase δCP is essentially unconstrained and the absolute scale of neutrino
masses is still undetermined. Despite the remaining unknowns, our knowledge of neutrinos has
greatly improved thanks to the most recent experiments and many models have been ruled out.
We might expect that some coherent theoretical description had already become apparent from
the data. Unfortunately this is not the case. Present data can still be described by widely
different approaches.

2. Anarchy
One possible interpretation of the current results is in term of anarchy [6], which does not
recognise any special pattern in the neutrino data. Lepton mixing angles and neutrino mass
ratios are generic order one parameters, the smallness of θ13 and ∆m2

sol/∆m
2
atm being accidental

features with no special meaning. The actual size of θ13 and the indications in favour of a non
maximal θ23 have strengthened this point of view.

It is worth saying that the idea of anarchy has several good aspects. Anarchy can be easily
incorporated in valuable theoretical frameworks. For instance it can be realized in SU(5) Grand
Unified Theories (GUTs), by the inclusion of a Froggatt-Nielsen U(1)FN group [7] under which
the three generations of pentaplets 5̄ are assumed to have the same charge. It can also be realized
in models with extra dimensions (ED). For example, standard model fermions in the bulk of one
extra dimension, spanning an interval of finite length, develop zero modes whose profiles are
controlled by bulk mass parameters. If the Higgs doublet is localized at one of the two edges
of the five dimensional interval, the Yukawa couplings mimic those of a Froggatt-Nielsen setup,
with the role of the Froggatt-Nielsen charges played by the fermion bulk masses. Anarchy is also
compatible with the known solutions to the hierarchy problem, such as supersymmetry (SUSY)
and warped ED. Finally, models based on a Froggatt-Nielsen U(1)FN symmetry are flexible
enough to allow for the implementation of several variants of anarchy, where neutrino U(1)FN
charges are not necessarily equal. Such variants proved successful in reproducing, at the level of
order of magnitudes, all fermion masses and mixing angles [8].

The main drawback of anarchy and its variants is the difficulty to identify a quantitative test
of the idea. Models based on a Froggatt-Nielsen U(1)FN symmetry contain a large number of
order-one independent parameters, thus preventing predictions beyond the order-of-magnitude
accuracy. By accepting the principle of anarchy, the best we can do is to estimate probability
distributions for the physical observables and evaluate the likelihood of our universe. We loose all
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the potentiality offered by the excellent experimental precision with which fermion masses and
mixing angles are known today. Moreover, if new degrees of freedom carrying flavour charges
are present at the TeV scale, as expected in the known solutions to the hierarchy problem,
new sources of flavour change and/or CP violation appear and additional mechanisms should be
invoked to avoid conflict with the present data.

3. Discrete Symmetries
An alternative description of the data is based on flavour symmetries. There are many types
of flavour symmetries, global or local, continuous or discrete. There is no evidence for exact
flavour symmetries and one of the most important aspects in model building is represented by
the symmetry breaking. There is a large freedom related to the choice of the symmetry breaking
sector and to the characteristic symmetry breaking scale. It is impossible to give here even a
short account of all types of models. A special class of models is the one based on discrete
flavour symmetries [9], adopted to reproduce some simple pattern U0

PMNS , which provides a first
approximation to the observed lepton mixing matrix UPMNS . We have

UPMNS = U0
PMNS +O(u) , (2)

where O(u) denotes a set of small corrections, proportional to some adimensional parameter
u. Such an approach was well motivated before 2012. Several examples of leading order (LO)
patterns U0

PMNS have been suggested. A well-known example is the TB one, given in eq. (1)
and described by a mixing matrix UTB of the type

UTB =


2√
6

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 ≈
 0.82 0.58 0
−0.41 0.58 −0.71
−0.41 0.58 0.71

 . (3)

This pattern can be easily derived from small discrete groups such as A4 or S4.
The general mechanism allowing to constrain U0

PMNS by a discrete symmetry is very simple.
The underlying model is assumed to be invariant under a discrete flavour symmetry Gf , broken
down in such a way that neutrino and charged lepton sectors have different residual symmetries,

at least in a LO approximation where small effects are neglected. The combination m†lml of the
charged lepton mass matrix ml is invariant under the subgroup Ge of Gf , while the neutrino mass
matrix mν is invariant under the subgroup Gν . It is interesting to note that, if neutrinos are of
Majorana type, as assumed here, the most general group leaving mν invariant (and the individual
masses mi unconstrained) is Z2 × Z2, a finite group. The subgroup Ge can be continuous, but
Ge discrete remains the simplest option. We require a sufficiently large Ge to distinguish the
three charged leptons. For instance we can choose Ge = Zn (n ≥ 3) or Ge = Z2 × Z2. Once Ge
and Gν have been chosen inside Gf , the embedding automatically fixes the relative alignment of

m†lml and mν in flavour space. Lepton masses are unconstrained and U0
PMNS is determined up

to Majorana phases and up to permutations of rows and columns. This freedom apart, we can
predict the three mixing angles θ0ij and the Dirac phase δ0CP . In most concrete models, where
symmetry breaking is achieved via vacuum expectation values (VEVs) of a set of flavons, the
LO results are modified by small corrections, as in eq. (2). In the specific case U0

PMNS = UTB
these corrections were expected to be very small, of the order of few percent, not to spoil the
good agreement in the predicted value of the solar mixing angle. On this basis many models
reproducing UTB at the leading order predicted θ13 not larger than few degrees, later proved
wrong by experiments. Discrete flavour symmetries can also be extended to quarks and even
incorporated in GUTs, but in the existing constructions the symmetry has to be badly broken
in the quark sector, leaving very few hints at the level of physical quantities.
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Due to the sizable deviation of the latest data from the TB ansatz, many people have
contemplated several modifications of the simplest models based on discrete symmetries. If
we keep adopting U0

PMNS = UTB as LO approximation, perhaps the most economic way to
reproduce the actual value of θ13 is to introduce large correction terms, O(u) ≈ 0.2. This is
also viable in some scheme where U0

PMNS differs substantially from UTB, such as the so-called
bimaximal (BM) mixing. Introducing large corrections has the disadvantage that beyond the LO
the number of independent contributions is generally quite large. If their typical size is about
0.2, all mixing angles tend to be affected by generic corrections of this type and predictability
is lost [10]. Moreover large correction terms are dangerous if new sources of flavour changing
and/or CP violation are present at the TeV scale.

Another possibility is to look for alternative LO approximations where θ13 is closer to the
measured value. Remarkably, several groups Gf giving rise to more realistic LO approximations
have been found. Of particular interest are the groups leading to special form of trimaximal
(TM) mixing:

U0
PMNS = UTB U13(α) (4)

where U13(α) describes a rotation in the 13 plane by an angle α. Early examples are the groups
of the series ∆(6n2) [11]. The angle α is fixed by n. For n = 4(8) we have α = ±1/12(±1/24)
and sin2 θ013 = 0.045(0.011). The Dirac phase is zero (modulo π).

A further possibility is to relax the symmetry requirements. It is worth mentioning that the
smallest group reproducing TB mixing through the breaking down to Ge = Z3 and Gν = Z2×Z2

is S4. In the basis where charged leptons are diagonal, we can identify one of the two parities
in Gν with that generated by the so-called µτ exchange symmetry, directly responsible for the
vanishing of θ13 and for θ23 being maximal. If the residual symmetry Gν is reduced from Z2×Z2

down to Z2 by eliminating the µτ exchange symmetry, the transformations belonging to Ge and
Gν only generate A4, not the whole S4. Assuming such a breaking pattern we find that the
predicted mixing is again of TM type, as in eq. (4), but U13(α) generalises to a unitary matrix,
parametrized by a rotation angle α and a phase, both unconstrained [12]. We obtain a testable
sum rule, which for small θ13 reads

sin2 θ23 =
1

2
+

1√
2

sin θ13 cos δCP +O(sin2 θ13) . (5)

Explicit models based on A4 realizing such a breaking pattern were indeed proposed before the
measurement of θ13 [13]. The possibility of reducing the residual symmetry Gν to Z2 can be
systematically investigated [14]. As in the previous example, this framework only predicts two
combinations of the three mixing angles.

4. Combining Discrete Symmetries and CP
A more recent possibility, which I would like to illustrate more in detail in this talk, is to combine
discrete and CP symmetries and explore the symmetry breaking patterns such a combination
can give rise to. This idea is not new and relies on many existing examples and suggestions. A
well-known example is that of the so-called µτ reflection symmetry [15, 16] (not to be confused
with the µτ exchange symmetry), which exchanges a muon (tau) neutrino with a tau (muon)
antineutrino in the charged lepton mass basis. If such a symmetry is imposed, the atmospheric
mixing angle is predicted to be maximal, while θ13 is in general non-vanishing for a maximal
Dirac phase δ. Models combining S4 and CP can be found in the recent literature [17,18]. Other
approaches dealing with discrete symmetries and CP are illustrated in [19–21].

In ref. [22] we have proposed a general formalism which combines CP with a discrete flavour
symmetry. Consider a flavour symmetry group Gf and a set of fields φ transforming in some
representation ρ of Gf :

φ′(x) = ρ(g) φ(x) g ∈ Gf , (6)
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where ρ(g) is a unitary matrix. We can define a CP transformation on φ as follows [23]

φ′(x) = X φ∗(xCP ) xCP ≡ (x0,−~x) , (7)

where X is a matrix in flavour space. If the fields φ are fermions, the well-known action of
CP on spinor indices is understood. The choice of X is not arbitrary, but has to fulfill certain
consistency conditions. First, we require the matrix X to be unitary and symmetric,

XX† = XX∗ = 1 . (8)

In the presence of a flavour symmetry, requiring X symmetric is not the most general option,
but if we do so then CP 2 = 1 automatically holds. A second condition arises by considering the
action of CP combined with some transformation of Gf [22,24]. For any element g of the group
Gf , an element g′ belonging to Gf should exist such that(

X−1ρ(g) X
)∗

= ρ(g′) . (9)

Notice that in general g and g′ are distinct. As has been shown in [22], the mathematical structure
of the group GCP comprising Gf and CP is of the form GCP = Gf oHCP with HCP being the
parity group generated by CP .

In our proposal we consider a theory invariant under GCP with the three generations of lepton
doublets l in some representation ρ of Gf

l′(x) = ρ(g) l(x) . (10)

Under CP we have
l′(x) = X l∗(xCP ) , (11)

where X satisfies both eq. (8) and eq. (9). We assume that in some limit of the theory GCP
is broken to the subgroups Ge and Gν in the charged lepton and neutrino sectors, respectively.
Ge is a subgroup of Gf generated by a set of elements Qi, while Gν = Z2 × CP is the direct
product of a parity contained in Gf , generated by the element Z, and CP , generated by X.
Notice that while Qi, Z and X are defined in the representation ρ, for simplicity we make no
distinction between (Qi, Z, X) and the corresponding abstract elements of GCP they represent.
The subgroup Gν involves the direct product between Z2 and CP , and thus the transformations
described by Z and X should commute. This gives rise to the condition(

X−1Z X
)∗

= Z , (12)

a special version of eq. (9) with g = g′. Given a discrete group Gf and a parity subgroup
generated by Z, eqs. (8), (9) and (12) can be read as a set of constraints on X, i.e. on the
possible CP definitions we can adopt to realize the desired symmetry breaking pattern. The

residual symmetries Ge and Gν imply the following conditions on m†lml and mν :

Q†i (m
†
lml)Qi = (m†lml) , ZTmνZ = mν , XmνX = m∗ν . (13)

From these conditions we can derive the mixing matrix U0
PMNS , and we find that in general it

can be parametrized by one real parameter θ, ranging from 0 to π:

U0
PMNS = U0

PMNS(Qi, Z,X, θ) 0 ≤ θ ≤ π . (14)

Mixing angles and phases, both Dirac and Majorana, are then predicted as a function of θ, modulo
the ambiguity related to the freedom of permuting rows and columns and to the intrinsic parity
of neutrinos. The formalism is completely invariant under any change of basis in field space. The
physical results only depend on GCP and the residual symmetries specified by (Qi, Z,X).
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5. The case Gf = S4
To exemplify our results, in ref. [22] we have perform an exhaustive analysis of the case Gf = S4.
The group S4 can be defined in terms of three generators S, T and U [25] which fulfill the
following relations

S2 = E , T 3 = E , U2 = E ,

(ST )3 = E , (SU)2 = E , (TU)2 = E , (STU)4 = E (15)

with E being the neutral element of S4. The generators S and T alone give rise to the group
A4. The group S4 has five irreducible representations: 1, 1′, 2, 3 and 3′. We assign the three
generations of left-handed leptons to the faithful representation 3′ (equivalent results are obtained
by choosing the representation 3) and for this representation we adopt a basis where the elements
S, T and U are represented by the real matrices [25]

S =

 −1 0 0
0 1 0
0 0 −1

 , T =
1

2

 1
√

2 1√
2 0 −

√
2

−1
√

2 −1

 , U =

 1 0 0
0 1 0
0 0 −1

 . (16)

We have considered all possible choices of Ge and Gν matching our symmetry breaking pattern.
We have found that all the independent physical results are exhausted by considering the
representative cases listed in table 2.

Ge Qi
Z3 T
Z4 STU

Z2 × Z2 (TST 2S,UT 2)

Gν Z X
Z2 × CP S Xi (i = 1, ..., 6)
Z2 × CP SU Xi (i = 1, ..., 4)
Z2 × CP U Xi (i = 1, ..., 4)

Table 2. Representative choice of generators Qi for the subgroup Ge and (Z,X) for the subgroup
Gν . For any Z chosen in S4 only a finite number of CP transformations Xi satisfying eqs. (8,9,12)
are allowed. Their expressions in the representation 3′ are given in eq. (17).

For any Z chosen in S4 only a finite number of CP transformations Xi satisfying eqs. (8,9,12)
are allowed. For Z chosen as in table 1, the admissible CP transformations Xi (i = 1, ..., 6) are
given by:

X1 =

 1 0 0
0 1 0
0 0 1

 , X2 =

 −1 0 0
0 1 0
0 0 −1

 , X3 =

 1 0 0
0 1 0
0 0 −1

 ,

X4 =

 −1 0 0
0 1 0
0 0 1

 , X5 =

 0 0 −1
0 −1 0
−1 0 0

 , X6 =

 0 0 1
0 −1 0
1 0 0

 . (17)

These transformations are defined up to an irrelevant overall phase. X1 is the canonical CP
transformation.

Several interesting cases arises when Ge = Z3. Two of them are given in table 3, in terms of
the generators (Qi, Z,X).
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case Qi Z X
I T S X1

IV T SU X1

Table 3. Choice of (Qi, Z,X) defining cases I and IV. The subgroup Ge generated by T is Z3.

ææ

àà

ìì

ææ

àà

ÈÈ

È

È

È

sin Θ13

JCP
3 Σ Case I

Case IV

Θ = 0

Θbf

Θbf

Θ = Π �4Θ = Π �6
Θ = Π �3

Θ = Π �2Θ = Π �2

Θ = Π �4

__ __

0.0 0.2 0.4 0.6 0.8 1.0
-0.10

-0.05

0.00

0.05

0.10

ææ

àà

ìì

ææ

àà

ÈÈ

È

È

È

JCP

sin2
Θ12

3 Σ

Case I

Case IV

Θ = 0

Θbf

Θbf

Θ = Π �4
Θ = Π �3

Θ = Π �6

Θ = Π �2

Θ = Π �4

Θ = Π �2
____

0.0 0.2 0.4 0.6 0.8 1.0
-0.10

-0.05

0.00

0.05

0.10

ææ
àà

ìì

ææ
àà

È

È

È

È

È

sin2
Θ12

sin Θ13

Case I

Case IV

3 Σ

3 Σ

Θ = 0 Θbf

Θbf

Θ = Π �4

Θ = Π �6

Θ = Π �3

Θ = Π �4

Θ = Π �2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Results for the mixing parameters

sin θ13, sin2 θ12 and JCP for Case I (straight line)

and Case IV (dashed line). We mark the value

θbf of the parameter θ for which the χ2 functions

have a global minimum with a red dot. For

better guidance of the eye we also mark θ = π/n,

n = 6, 4, 3, 2 on the curves. The shown 3σ ranges

for the mixing angles are taken from [5].

These two cases correspond to two particular realizations of the µτ reflection symmetry. They
predict a maximal atmospheric mixing angle, a maximal Dirac phase and vanishing Majorana
phases. The solar and reactor angles are given by

sin2 θ12 =


1

2 + cos 2θ
(case I)

cos2 θ

2 + cos2 θ
(case IV)

sin2 θ13 =


2

3
sin2 θ (case I)

1

3
sin2 θ (case IV)

. (18)

The correlations between sin2 θ12, sin θ13 and the CP invariant JCP are displayed in fig. 1.
By optimizing the choice of θ through the minimization of the χ2 function, we find a reasonable
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Figure 2: Results for the atmospheric, solar and reactor mixing angles for Case II (straight line) and Case V

(dashed line). We mark the value θbf of the parameter θ for which the χ2 functions have a global minimum

with a red dot. For better guidance of the eye we also mark θ = π/n, n = 4, 3, 2 on the curves. The shown

3σ ranges for the mixing angles and the best fit values of the atmospheric mixing angle are taken from [5].

The plot for sin2 θ12 and sin θ13 is the same as for Case I and Case IV and can be found in figure 1.

agreement with the data. Notice that the µτ reflection symmetry is not explicit in the chosen
basis, where the CP transformation X1 in the 3′ representation is canonical. To make a direct
contact with the µτ reflection symmetry we have to move to the basis where the T generator

and the combination m†lml are diagonal. In a concrete model realizing either case I or case IV
the predicted value of the Dirac phase would only depend on the symmetry breaking pattern,
and not on the specific values of Lagrangian parameters realizing it. In this sense cases I and IV
could provide examples of ”geometrical” CP violation.

Not all the cases considered in our analysis necessarily lead to non-trivial CP phases. For
instance in cases II and V, defined in table 4, we find that all phases are trivial.

case Qi Z X
II T S X3

V T SU X2

Table 4. Choice of (Qi, Z,X) defining cases II and V. The subgroup Ge generated by T is Z3.

Such a result is counterintuitive, since CP is not assumed to be part of the residual symmetry of
the charged lepton sector and thus we might expect that CP is always broken in our construction.
Trivial CP phases can however arise from a CP symmetry of accidental type. In cases II and
IV it happens that the charged lepton sector, invariant under Ge, is also accidentally invariant
under the CP transformation associated to X3. In case II this suffices to conclude that CP is
conserved, at least at the level of the lepton masses and mixing angles. In case IV we should
further notice that X3 is also accidentally a symmetry of the neutrino sector, even though we
originally asked invariance under the CP transformations generated by X2. Cases II and V make
the same prediction of the solar and reactor angles as cases I and IV, respectively. They are given
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Figure 3: Results for the mixing angles sin θ13,

sin2 θ12 and sin2 θ23 for Case a (straight line) and

Case b (dashed line) for Ge = Z4 or Ge = Z2×Z2.

We mark the value θbf of the parameter θ for

which the χ2 functions have a global minimum

with a red dot. For better guidance of the eye we

also mark θ = 0, π/4, π/3, π/2 on the curves. The

shown 3σ ranges for the mixing angles and the

best fit values of the atmospheric mixing angle are

taken from [5].

in eq. (18). The atmospheric angle is related to the other angles by

sin2 θ23 =


1

2

(
1−
√

3 sin 2θ

2 + cos 2θ

)
(case II)

1

2

(
1− 2

√
6 sin 2θ

5 + cos 2θ

)
(case V) .

(19)

Despite the absence of CP violating effects form non-trivial phases, cases II and V provide
a nice fit to the mixing angles, once the free parameter θ is optimized by minimizing the χ2

function. Such a fit is illustrated in fig. 2.
Other two cases very similar to cases II and V are those called VI and VII and defined in table

5, through the choice of (Qi, Z,X). At variance with the previous cases, the residual symmetry
in the charged lepton sector is Z4(Z2×Z2) for case VI(VII). Also in these cases trivial CP phases
are predicted as a consequence of accidental CP symmetries. Case VI and case VII predict the
same mixing angles:

sin2 θ13 =
1

4

(√
2 cos θ + sin θ

)2
(20)
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sin2 θ12 =
2

5− cos 2θ − 2
√

2 sin 2θ
(21)

sin2 θ23 =


4 sin2 θ

5− cos 2θ − 2
√

2 sin 2θ
(case a)

1− 4 sin2 θ

5− cos 2θ − 2
√

2 sin 2θ
(case b) .

(22)

The two possibilities a and b arise from exchanging the second and third rows of U0
PMNS . The

correlations among the three mixing angles are shown in fig. 3. We see that also in these cases
the experimental mixing angles can be well approximated by a suitable choice of the parameter
θ.

case Qi Z X
VI STU U X2

VII (TST 2S,UT 2) U X1

Table 5. Choice of (Qi, Z,X) defining cases VI and VII. The subgroup Ge generated by STU
is Z4, while that generated by (TST 2S,UT 2) is Z2 × Z2.

We have not mentioned other cases leading to unrealistic lepton mixing angles. Among them
we have also found possibilities where both the angles and the CP phases carry a non-trivial
dependence from the parameter θ.

6. Conclusion
In neutrino physics we have recently witnessed a decisive progress on the experimental side. The
reactor angle is now precisely measured and it is away from zero by many standard deviations.
We also have a first indication favoring a non-maximal atmospheric mixing angle. While these
steps have been effective in ruling out many models of fermion masses and mixing angles, it is fair
to say that no compelling and unique theoretical picture has emerged so far. Perhaps the most
disturbing aspect is that present data can still be described within widely different frameworks.
The new data have strengthened the case of anarchy. We cannot exclude that neutrino mass
ratios and mixing angles are just random O(1) quantities, reflecting no special pattern. Flavour
symmetries remain important tools to address the flavour problem, especially when quarks and
leptons are analyzed in a common framework. Models based on discrete symmetries, tailored to
reproduce the features of the early data from neutrino oscillations, are less supported by data
now. Modifications of the simplest realizations are required. A lot of theoretical effort has been
made in this direction. Several possibilities to accommodate a large θ13 have been devised. The
simplest one consists in adding large corrections to the schemes predicting a vanishing θ13 at
the LO. In alternative, several discrete groups leading to realistic LO mixing matrices have been
identified. It is also possible to relax symmetry requirements to avoid θ13 = 0 as LO prediction. In
this talk we have reviewed a promising approach where CP is included in the symmetry breaking
pattern. From a theory viewpoint, combining CP and a discrete symmetry Gf leads to non-trivial
consistency conditions that the admissible definitions of CP should satisfy. In our construction
we have assumed residual symmetries Ge and Gν = Z2 × CP , Ge and Z2 being subgroups of a
discrete group Gf , and shown that such a requirement determines all mixing angles and phases
in terms of a single real parameter. By making a comprehensive analysis of the case Gf = S4 we
have identified several new realistic mixing patterns, thus proving the viability of our approach.
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