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Abstract. We carry out a systematic study of electric dipole mode (E1) for neutron-rich
isotopes from nickel (Z=28) to tin (Z=50) using a time-dependent mean-field theory. Our
time-dependent scheme is the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory
which can self-consistently describe nuclear dynamics with pairing correlation. We focus our
discussion on the pygmy dipole resonance (PDR) and E1 polarizability (αD). The correlation
between neutron-skin thickness and PDR strongly depends on the neutron number, but the
correlation between the skin thickness and αD is much more stable.

1. Introduction
Recent progress in radioactive isotope facilities and experimental techniques allows us to generate
and to study neutron-rich nuclei. In the neutron-rich region far from stability line, the neutron-
skin and halo structures may appear in the ground state [1]. Due to their exotic structures in
the ground state, new elementary modes are expected. The pygmy dipole resonance (PDR) is
known as a candidate of such a characteristic excited state in the neutron-rich nuclei, which
appears in low energy region, sometimes interpreted as a neutron-skin mode. Previous studies
indicate that there is the linear relation between PDR and neutron-skin thickness [2, 3]. On the
other hand, Ref.[4] indicates that the correlation between PDR and the skin is small from the
covariance analysis, and that the electric dipole (E1) polarizability is much more correlated to
the neutron skin than PDR [4]. Recently, the dipole polarizability has been measured for 206Pb
at RCNP, Osaka University [5].

In the present paper, the relation among neutron-skin, PDR and E1 polarizability, will be
shown for over 350 isotopes, which is obtained by the linear response calculation using the
time-dependent scheme.

2. Formulation
In order to study the dynamics of many nuclei including superfluid deformed nuclei, we proposed
the canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory. The Cb-
TDHFB can be derived from the full TDHFB equation represented in the canonical basis and
on the assumption that the pair potential can be approximated to be diagonal in the canonical
basis [6].
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Introducing the time-dependent canonical states |ϕk(t)⟩ and |ϕk̄(t)⟩, we express the TDHFB
state in the canonical (BCS) form as

|Ψ(t)⟩ =
∏
k>0

{
uk(t) + vk(t)c

†
k(t)c

†
k̄
(t)

}
|0⟩, (1)

where uk(t), vk(t) are time-dependent BCS factors. It should be noted that the pair of states,
k and k̄, are not necessarily related to each other by the time-reversal, |ϕk̄(t)⟩ ̸= T |ϕk(t)⟩. The
diagonal approximation of the pair potential leads to the following equations:

i
∂

∂t
|ϕk(t)⟩ = (h(t)− ηk(t))|ϕk(t)⟩, i

∂

∂t
|ϕk̄(t)⟩ = (h(t)− ηk̄(t))|ϕk̄(t)⟩, (2a)

i
d

dt
ρk(t) = κk(t)∆

∗
k(t)− κ∗k(t)∆k(t), (2b)

i
d

dt
κk(t) = (ηk(t) + ηk̄(t))κk(t) + ∆k(t) (2ρk(t)− 1) . (2c)

These basic equations determine the time evolution of the canonical states, |ϕk(t)⟩ and |ϕk̄(t)⟩,
their occupation ρk(t) = |vk(t)|2, and pair probabilities κk(t) = uk(t)vk(t). ∆k(t) is the gap
energy,

∆k(t) =
∑
l>0

Gf(ε0k)f(ε
0
l )κl(t), (3)

where G is a the pairing strength determined by the smoothed pairing method [7], and f(ε)
is a cutoff function which defines the number of canonical basis [6]. The cutoff function is
time-independent with the single-particle energies ε0k at the ground state.

We solve the Cb-TDHFB equations in real time and calculate the linear response of the
nucleus. The numerical procedure of linear response is same as that of Ref.[6], we add

an external field V̂ext(r, t) = −kF̂E1δ(t) to the ground state of the nucleus, where F̂E1 =
(N/A)

∑
p r̂p − (Z/A)

∑
n r̂n, here r = (x, y, z) and k is an arbitrary small parameter. Then,

we compute the time-evolution of the nuclear density using the time-dependent scheme. We
obtain the strength function S(E1;E) through the Fourier transformation of the time-dependent

expectation value of F̂E1[6]. To quantify the PDR, we use the ratio:

m1(Ec)

m1
≡

∫ Ec E × S(E1;E)dE∫ ET E × S(E1;E)dE
, (4)

where we adopt the cutoff energy Ec = 10 MeV and the total energy ET = 100 MeV in the
present calculation. The E1 polarizability αD is defined using E1 strength function as,

αD ≡ 2

∫ ET S(E1;E)

E
dE. (5)

In this work, we use the three-dimensional Cartesian coordinate for the canonical states,
ϕk(r, σ; t) = ⟨r, σ|ϕk(t)⟩ with σ = ±1/2. The coordinate space is discretized in the square mesh
of ∆x = ∆y = ∆z = 1.0 fm in a sphere with radius of 15 fm.

3. Results
Figure 1 shows the PDR ratio as a function of neutron-skin thickness which is defined by the
difference between root mean square radii of neutrons and protons, from Ge to Sn isotopes. In
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both panels, open circles and triangles indicate the isotopes with N=50 and 82, respectively.
We can see the linear relation between the PDR ratio and the neutron-skin thickness for each
isotopic chain with N=50 → 58. The slope of the linear correlation becomes small as the proton
number approaches Z=50. The slope for Sn isotope from N=50 to 58 is about a half of that in
Ge isotope. The PDR ratio strength jumps up again over N=82. The correlation between PDR
and N -skin strongly depends on the neutron number.
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Figure 1. PDR ratio defined by Eq.(4), as a function of N -skin thickness from Ge to Sn isotopes. Open circle
and triangle symbols indicate the isotope with N=50 and 82, respectively.
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Figure 2. E1 polarizability αD defined by Eq.(5), as a function of neutron-skin thickness for Sn isotopes with
N = 50 − 90. Circles (squares) with solid lines indicate results with SkM∗ (SkI3) parameter set. Open symbols
with dashed lines are defined by Eq.(6)

Figure 2 shows the E1 polarizability αD as a function of N -skin thickness for Sn isotopes.
Circles (squares) are obtained with the SkM∗ (SkI3) Skyrme energy functional. Open symbols
in Fig.2 are computed from the E1 strength excluding the PDR part;

α̃D ≡ 2

∫ ET

Ec

S(E1;E)

E
dE. (6)
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This can be regarded as the dipole polarizability associated with the giant dipole resonance.
The SkI3 parameters are made so as to reproduce the ordering of single-particle levels in Pb
isotopes obtained by the relativistic mean-field model. Especially, the part of the spin-orbit
force is different from that of SkM∗. The polarizability α̃D is strongly correlated with the skin-
thickness, although the contribution of the PDR becomes large in both results over N=82. In
contrast to the relation between PDR and the skin, the correlation between αD and the skin
thickness is more stable with respect to change of the neutron number and the energy functional.

In summary, we found the linear correlation between the PDR and the neutron-skin
thickness, however, the correlation rather strongly depends on the neutron number. The
correlation between αD and the neutron-skin thickness is more robust, especially if we remove
the contribution from the PDR. This may suggest a better way to constrain the neutron-skin
thickness by the observation of E1 strength function.
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