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Abstract. The geometry of the shears mechanism in nuclei is obtained by taking the limit of
large angular momentum of shell-model matrix elements.

1. Introduction
In several lead isotopes, as well as in other regions of the nuclear chart near doubly-magic
closures, regular sequences of γ rays are observed resembling those typical of a rotational
band [1, 2, 3, 4]. These transitions are of magnetic character, in contrast to the usual quadrupole
nature of nuclear rotors [5]. An explanation of this observation invokes the so-called ‘shears’
mechanism [6]. In a weakly deformed nucleus there exist low-energy configurations in which
neutrons and protons combine into stretched structures (‘blades’) with angular momentum
generated by the re-coupling of these blades, resembling the closing of a pair of shears. The
breaking of the rotational symmetry in this case originates in an anisotropic distribution of
nucleonic current loops (rather than electric charge), and thus the phenomenon is also referred
to as magnetic rotation [7].

While an interpretation in terms of the shears mechanism provides an appealing, intuitive
picture of these nuclear states, the question remains whether this geometry is borne out by
microscopic calculations. A numerical shell-model calculation by Frauendorf et al. [8] confirmed
the shears picture in the lead region. An analytic derivation of the geometry of the shears
mechanism from the shell model is the purpose of the present contribution which presents results
complementary to those reported elsewhere [9].

2. General shell-model expressions for the shears matrix element
Consider m nucleons of one type (say neutrons) in particle-like orbits j1ν , j2ν , . . ., and m′

nucleons of the other type (protons) in hole-like orbits j−1
1π , j

−1
2π , . . ., where jkρ (ρ = ν, π) is

used as an abbreviation for the set of quantum numbers nkρ, `kρ and jkρ of singe-particle
levels in a central potential. The m-particle (mp) and m′-hole (m′h) states are represented
as |N〉 ≡ |j1νj2ν(J12ν) . . . Jν〉 and |P−1〉 ≡ |j−1

1π j
−1
2π (J12π) . . . Jπ〉, where J12...ρ are intermediate

angular momenta occurring in some coupling scheme, and Jν and Jπ are the neutron and proton
total angular momenta, respectively. The single-particle orbits jkρ (k = 1, 2, . . .) may or may not
be identical and, in the former case, the states |N〉 and |P−1〉 are assumed to be Pauli allowed.
A shears band consists of the states |NP−1; J〉 where J results from the coupling of Jν and Jπ.
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A general shell-model hamiltonian has a neutron and a proton piece, and a neutron–proton
interaction, and therefore can be written as

Ĥ = Ĥν + Ĥπ + V̂νπ.

The quantity 〈NP−1; J |Ĥ|NP−1; J〉 will be referred to as the (diagonal mp–m′h) shears matrix
element. Due to the scalar character of the hamiltonian, the matrix elements of Ĥν and Ĥπ

depend only on the quantum numbers appearing in |N〉 and |P 〉, respectively; Ĥν and Ĥπ give
constant energy contributions to all members of the shears band, irrespective of the total angular
momentum J , and are therefore of no interest in the following. Any J dependence originates from
the neutron–proton interaction V̂νπ, specified by its matrix elements 〈jkνjlπ;R|V̂νπ|jk′νjl′π;R〉.
A multipole expansion of V̂νπ leads to the following expression for the shears matrix element:

〈NP−1; J |V̂νπ|NP−1; J〉

=
∑
klRλ

(−)jkν+jlπ+Jν+Jπ+J+R(2R+ 1)V R
jkνjlπ

{
jkν jkν λ
jlπ jlπ R

}{
Jν Jπ J
Jπ Jν λ

}
×〈N ||(a†jkν ãjkν )(λ)||N〉〈P−1||(a†jlπ ãjlπ)(λ)||P−1〉, (1)

where V R
jkνjlπ

≡ 〈jkνjlπ;R|V̂νπ|jkνjlπ;R〉. The operator a†jkρmkρ creates a neutron (ρ = ν) or a
proton (ρ = π) in orbit jkρ with projection mkρ on the z axis; the corresponding annihilation
operator ajkρmkρ is modified to ãjkρmkρ ≡ (−)jkρ+mkρajkρ−mkρ to make it behave as a proper
tensor under rotations in three dimensions.

The expression (1) for the shears matrix element between mp–m′h states can be further
reduced with use of standard techniques of angular momentum. This reduction is carried out
here for m = m′ with m = 1 and m = 2.

2.1. The 1p–1h shears matrix element
For m = 1, the members of the shears band are written as |NP−1; J〉 = |jνj−1

π ; J〉 and the
expression (1) reduces to one for a particle–hole matrix element,

〈NP−1; J |V̂νπ|NP−1; J〉 = −
∑
R

(2R+ 1)V R
jνjπ

{
jν jπ J
jν jπ R

}
.

This is nothing but the Pandya relation which expresses a particle–hole matrix element as a
sum of particle–particle matrix elements [10]. The object in curly brackets is a 6j symbol [11],
a quantity which is scalar under rotations, depending on six angular momenta. It is in fact the
simplest non-trivial scalar 3nj symbol, the case n = 1 being the trivial triangular delta {j1j2j3}
which is equal to one if j1, j2 and j3 form a triad and zero otherwise [12]. For the purpose of
comparing with the case m = 2 given below, it is of some interest to convert the 6j symbol to
the standard notation for 3nj symbols (see eq. (17.11a) of Yutsis et al. [12]), leading to

〈NP−1; J |V̂νπ|NP−1; J〉 = −
∑
R

(2R+ 1)V R
jνjπ


jν jπ
J R

jν jπ

 . (2)

2.2. The 2p–2h shears matrix element
For m = 2, the members of the shears band arise from the two-neutron-particle state
|N〉 ≡ |j1νj2ν ; Jν〉 and the two-proton-hole state |P−1〉 ≡ |j−1

1π j
−1
2π ; Jπ〉 which are coupled to

angular momentum J . The two-particle reduced matrix element in eq. (1) equals

〈j1j2; J ||(a†jk ãjl)
(λ)||j1j2; J〉 = (−)j1+j2+J+λ

√
2λ+ 1(2J + 1)P̂12

{
j1 j1 λ
J J j2

}
δk1δl1,
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where P̂12 is a symmetrizer defined as

P̂12f(j1, j2) = f(j1, j2) + f(j2, j1),

for any function f . The corresponding result for holes is obtained from eq. (14.39) of Talmi [11],

〈j−1
1 j−1

2 ; J ||(a†jk ãjl)
(λ)||j−1

1 j−1
2 ; J〉 = (−)j1+j2+J+1

√
2λ+ 1(2J + 1)P̂12

{
j1 j1 λ
J J j2

}
δk1δl1.

Insertion of these expressions for the two-particle and two-hole reduced matrix elements in eq. (1)
leads to the shears matrix element

〈NP−1; J |V̂νπ|NP−1; J〉
(2Jν + 1)(2Jπ + 1)

= −P̂ νπ12

∑
R

(2R+ 1)V R
j1νj1π


j1ν Jν Jπ j1π
j2ν J j2π R

j1ν Jν Jπ j1π

 , (3)

where P̂ νπ12 ≡ P̂ ν12P̂
π
12 now generates four terms according to

P̂ νπ12 f(j1ν , j2ν , j1π, j2π)
= f(j1ν , j2ν , j1π, j2π) + f(j1ν , j2ν , j2π, j1π) + f(j2ν , j1ν , j1π, j2π) + f(j2ν , j1ν , j2π, j1π).

The object in curly brackets in eq. (3) is a 12j symbol of the first kind, a quantity which is
scalar under rotations, depending on twelve angular momenta. The result (3) is obtained by
expressing the shears matrix element as a sum over four 6j symbols, which can be related to a
12j symbol (see eq. (19.1) of Yutsis et al. [12]).

If the neutrons and protons are all particle-like (or all hole-like), a result similar to eq. (3) is
obtained,

〈NP ; J |V̂νπ|NP ; J〉
(2Jν + 1)(2Jπ + 1)

= P̂ νπ12

∑
R

(2R+ 1)V R
j1νj1π

j1ν Jν Jπ j1π
j2ν J j2π R

j1ν Jν Jπ j1π

 , (4)

where the object in square brackets is a 12j symbol of the second kind (see eq. (19.2) of Yutsis
et al. [12]).

Note the striking similarity between the expressions (2) and (3) for the 1p–1h and 2p–2h
shears matrix elements, raising the hope for a treatment of the general case with m > 2, a
problem which is currently under study.

It is now a simple matter to introduce in the sums (2) or (3) values for the neutron–proton
interaction matrix elements and to derive the J dependence of the shears matrix element. The
geometric significance of these expressions can be understood by the taking the limit of large
angular momenta. If these are large in comparison with h̄, this can be considered as the classical
limit of the quantum-mechanical expression for the shears matrix element.

3. Classical expressions for the shears matrix element
Classical limits of 3j and 6j symbols are known since the seminal study of Wigner [13],
subsequently refined by Ponzano and Regge [14] whose work was put on a mathematically
solid footing by Schulten and Gordon [15]. The classical limit of a 3j symbol is associated with
the area of a triangle, while that of a 6j symbol involves the volume of a tetrahedron, with
the lengths of the sides determined by the angular momenta. However, for 9j (let alone 12j)
symbols only partial results are known and therefore the classical limit of the expression (3) is
difficult to obtain for an arbitrary neutron–proton interaction.
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Instead of dealing with a general interaction, consider the modified surface delta interaction
(MSDI),

V̂ MSDI =
∑
k<l

V̂ MSDI(k, l), V̂ MSDI(k, l) = −4πa′T δ(r̄k − r̄l)δ(rk −R0) + b′τ̄k · τ̄l + c′,

which is known to be a reasonable approximation to the realistic nucleon–nucleon force in terms
of the isoscalar and isovector strengths a′0 and a′1, and the strengths b′ and c′ of a charge-exchange
and a constant interaction. The neutron–proton matrix element of the MSDI is [16]

V R
jνjπ = −(2jν + 1)(2jπ + 1)

2

[
a01

(
jν jπ R
1
2 −1

2 0

)2

+ a0

(
jν jπ R
1
2

1
2 −1

)2
]
− b+ c, (5)

with
a01 =

a0 + a1

2
− (−)`ν+`π+R a0 − a1

2
,

and

aT = a′TC(R0), b = b′C(R0), c = c′C(R0), C(R0) = R4
nν`ν (R0)R2

0 = R4
nπ`π(R0)R2

0.

A geometric insight is obtained by introducing the neutron–proton matrix elements of the
MSDI into the expressions for the shears matrix elements. The procedure is illustrated with
the 1p–1h shears matrix element (2) and results are summarized for the 2p–2h shears matrix
element (3).

3.1. The 1p–1h shears matrix element
When the neutron–proton matrix elements of the MSDI (5) are introduced in the shears matrix
element (2), one encounters sums of the type

σ(λ)
n ≡

∑
R

(−)λR(2R+ 1)
(
jν jπ R
1
2 n− 1

2 −n

)2 {
jν jπ J
jν jπ R

}
,

for (λ, n) = (0, 0), (0,1) and (1,0). These reduce to simple expressions in the classical limit. For
example, for λ = 0, the sum can be exactly rewritten as

σ(0)
n =

(
jν jπ J
1
2 −n+ 1

2 n− 1

)2

.

The classical limit of the 3j symbol [13] leads to the approximations

σ
(0)
0 ≈ 2[1 + (−)jν+jπ+J ]

π(2jν + 1)(2jπ + 1)
1

sin θνπ
,

σ
(0)
1 ≈ 2

π(2jν + 1)(2jπ + 1)

(
1

sin θνπ
+ (−)jν+jπ+J 1

tan θνπ

)
,

where θνπ is the shears angle, that is, the angle between the neutron and proton angular
momenta,

θνπ = arccos
J(J + 1)− jν(jν + 1)− jπ(jπ + 1)

2
√
jν(jν + 1)jπ(jπ + 1)

.

For (λ, n) = (1, 0), a similar approximation is obtained from the relation σ
(1)
0 = −(−)Jσ(0)

1 .
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With use of the preceding approximations, the expression for the 1p–1h shears matrix
element (2) of a MSDI becomes

〈NP−1; J |V̂ MSDI
νπ |NP−1; J〉 ≈ (b− c) +

s1
2π sin θνπ

+
t1

2π tan θνπ
, (6)

with

s1 = [1 + (−)jν+jπ+J ](a0 + a1) + 2a0 + (−)`ν+`π+J(a0 − a1),
t1 = 2(−)jν+jπ+Ja0 + (−)`ν+`π+jν+jπ(a0 − a1).

3.2. The 2p–2h shears matrix element
A classical limit can also be obtained for the 2p–2h shears matrix element (3). The derivation
is more complicated [9] and leads to the result

〈NP−1; J |V̂ MSDI
νπ |NP−1; J〉 ≈ 4(b− c) +

s2
2π sin θνπ

+
t2

2π tan θνπ
, (7)

where θνπ is now the angle between J̄ν and J̄π, and with

s2 = 4(3a0 + a1), t2 = 4ϕ(a0 − a1), ϕ = 1
4 P̂

νπ
12 (−)`1ν+j1ν+`1π+j1π .

The classical limit of the 2p–2h shears matrix element (7) is remarkably similar to that of the
1p–1h shears matrix element (6). In both expressions the quantity (b − c) appears and the
constant as well as the charge-exchange interaction contribute equally to all members of the
shears band. The coefficients sm and tm are expressed in terms of the isoscalar and isovector
strengths a0 and a1 of the MSDI but the dependence for m = 1 is different from that for m = 2.
It would be of interest to find the generalization to m > 2.

4. Comparison of quantum-mechanical and classical expressions
In Fig. 1 the exact 1p–1h and 2p–2h shears matrix elements of the SDI (i.e., MSDI with
b = c = 0) are compared with their classical approximations. To illustrate the quality of the
classical approximation, rather large values for the neutron and proton angular momenta are
chosen, jρ = 41

2 for the 1p–1h and Jρ = 20 for the 2p–2h case. Even for such unrealistically high
single-particle angular momenta, the 1p–1h matrix element does not display a shears behaviour
since the minimum energy is not attained for a configuration with orthogonal neutron and proton
angular momenta. The 2p–2h matrix element, on the other hand, does behave (qualitatively
at least) as expected for the energies of the members of a shears band. In fact, for t2 = 0 (or
a0 = a1) a minimum energy is reached for a shears angle θνπ = 90o between the neutron and
proton angular momentum vectors. Furthermore, it can be shown [9] that the shears picture
remains valid for smaller values of the angular momenta, as long as these are made from nearly
stretched configurations with Jρ ≈ j1ρ + j2ρ.

5. Conclusion
In this contribution 1p–1h and 2p–2h shears matrix elements of a modified surface delta
interaction (MSDI) are studied in the limit of large angular momentum. The geometric picture
underlying the shears mechanism is confirmed in the latter case and the shears angle at which
the 2p–2h matrix element reaches a minimum energy can be related to the isoscalar and isovector
strengths of the MSDI.

Future studies are called for along the same lines. They include the extension to more
complicated configurations (i.e., mp–m′h and mixed configurations) and to other components
of the interaction (e.g., the tensor force), and the study of electromagnetic properties.
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Figure 1. Left: The exact expression (2) for the 1p–1h shears matrix element of the SDI (dots)
compared with its classical approximation (6) (lines). The single-particle angular momenta are
jρ = 41

2 . The matrix element is in units a0 = a1. Right: The exact expression (3) for the 2p–2h
shears matrix element of the SDI (dots) compared with its classical approximation (7) (lines).
The single-particle angular momenta are j1ρ = 19

2 and j2ρ = 21
2 , and the total neutron and

proton angular momenta Jρ = 20. Results are shown for three choices of the ratio a0/a1 and
the matrix element is in units a1.
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