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Abstract. We report a history of the developments of the Monte Carlo shell model (MCSM).
The MCSM was proposed in order to perform large-scale shell-model calculations which direct
diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel
computation of the MCSM. Since 2011 we participated the High Performance Computing
Infrastructure Strategic Program and developed a new MCSM code for current massively parallel
computers such as K computer. We discuss future perspectives concerning a new framework and
parallel computation of the MCSM by incorporating conjugate gradient method and energy-
variance extrapolation.

1. Introduction

The nuclear shell model calculation has been very successful in understanding the nuclear
structure on the basis of nucleons interacting via the nuclear force. It can provide precisely the
properties, excitation schemes and transition probabilities of the low-lying states of a nucleus.
The conventional, standard solver for shell-model calculations is the exact diagonalization of
Hamiltonian matrix by the Lanczos algorithm in a given model space. However, the dimension
of the matrix grows exponentially as the number of valence nucleons increases and surpasses
the numerical feasibility limit of the Lanczos method (e.g. 5 x 10 for ®Ni in pfg9d5-shell,
discussed in Ref.[1]). In order to perform such large-scale shell model calculations, we have
developed the Monte Carlo shell model (MCSM) method. The MCSM was firstly proposed
by a part of the authors (M. Honma, T. Mizusaki and T. Otsuka) in 1995 [2], and has been
developed by the nuclear theory group of the University of Tokyo. Since the MCSM algorithm is
suited for parallel computations, we started the large-scale nuclear structure calculation project
with introducing PC clusters since 1999. In the proceedings, we briefly report a history of the
MCSM and utilization of PC clusters for parallel computations in view of computational aspect
in Sect.2, and summarize the framework of the MCSM in Sect.3, the details of which can be
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found in Ref.[3].

2. Computational aspects of the MCSM, Alphleet cluster and K computer

In 1999, a research project for large-scale shell-model calculations was launched jointly by the
RIKEN Accelerator Research Facility (currently known as RIKEN Nishina center) and the
nuclear theory group of the University of Tokyo. Since the MCSM calculation is suitable for
parallel computation, we introduced a PC cluster, Alphleet-1, mainly for the MCSM calculations.
It consisted of 73 workstations, each of which had 2 Alpha ev6 CPUs and was connected with
each other by Myrinet network [4, 5]. A photograph of the system is shown in the left of Fig.1.
The total system performance of LINPACK benchmark was 62GFLOPs, which was ranked as
the 169th fastest computer in the world at Nov. 1999 [6]. The main achievements of this project
were summarized in Ref.[7]. Especially, this project played an essential role to establish the
effective interaction of pf shell, GXPF1 [8].

After the completion of the project with Alphleet-1 cluster, a succeeding joint project has
started since the year 2001 based on a collaboration agreement between Center for Nuclear Study,
the University of Tokyo (CNS) and RIKEN Nishina Center. In this project, PC clusters are
provided by KAKENHI grants [9] through the Department of Physics, the University of Tokyo,
but infrastructures (e.g. electricity, cooling, etc.) and running costs are supported primarily by
CNS and RIKEN Nishina Center. Under this project, we introduced a computer cluster named
Alphleet-2, which was comprised of 176 Alpha CPUs from 2001 to 2003. Its photo is shown
in the right of Fig.1. Four racks on the right end of the photo were added in 2003 and were
comprised of 64 CPUs and 128 GB main memory. Each computation node of the cluster are
connected with each other via Myrinet network and has no hard disk drive. The features of
these clusters are summarized in Tab.1. This project has been continued at present. Especially
in 2012, we introduced a PC server equipped with 40 Intel Xeon cores and 660GB main memory
mainly for conventional shell-model calculations with the Lanczos method.

Table 1. Features of Alphleet-1 and Alphleet-2.

Fiscal Year Brand name Memory Nodes
Alphleet-1 1999 DEC DS-20 (Alpha 2 CPUs) 512MB 73
Alphleet-2 2001 Compaq ES-45 (Alpha 4 CPUs) 16GB 28
2003 Hewlett-Packard GS-1280 (Alpha 32 CPUs)  64GB 2

However, the number of processing units of the state-of-the-art massively parallel computers
surpasses ten thousands, which cannot be caught up by a PC cluster of a local research group.
In 2009, we decided to write a new MCSM code from scratch so that the MCSM calculations
can be run on recent massively parallel computers. This new code was equipped with many
advantages: hybrid parallel with Message Passing Interface library and OpenMP, capability of
isospin-breaking interaction, applicability to no-core shell model calculations, and a new efficient
algorithm for the computation of Slater determinants [10]. This new code played an essential
role to develop a new framework of the MCSM utilizing the energy-variance extrapolation [17],
which is discussed in Sect.3.2.

Based on these experiences of parallel computations of the MCSM and its achievements,
we have participated in activities of High Performance Computing Infrastructure Strategic
Programs for Innovative Research (SPIRE) Field 5 “The origin of matter and the universe”
since 2011. The SPIRE project aims at an integral understanding of the origin and structure of
matter and the Universe utilizing the K computer, which is the world’s fastest supercomputer
in 2011 [11]. In this project, we are in charge of the elucidation of nuclear properties by ultra
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large-scale simulations of quantum many-body systems. In 2011, we carried out benchmark tests
and performance tuning of the MCSM code at K computer.

3. Theoretical developments of the MCSM method

The major features of the recently developed MCSM framework are the variational procedure to
obtain the approximated wave function, which is described in Sect.3.1, and the energy-variance
extrapolation, which is described in Sect. 3.2.

3.1. Variational procedure
In the framework of the MCSM, the shell-model wave function is approximated as a linear
combination of angular-momentum- and parity-projected Slater determinants,

T,) = Z Z £ PiTc ), (1)

n=1 K=

where Nj is the number of the Slater-determinant basis states. The P]{/fK operator is the angular-
momentum and parity projector defined as

1 ma2r+1 . , .
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where Q = (a, 8,7) are the Euler angles and Dg/f (Q) denotes Wigner’s D-function. II stands
for the parity transformation. Each |¢,) is a deformed Slater determinant defined as

ﬁ (Zp leCz) =) (3)

k=1

which is parametrized by the complex Ng, x Ny matrix D. Nf and Ny, are the numbers of fermions
and single-particle states, respectively. The |—) denotes an inert core in the conventional shell-
model calculations or the vacuum in no-core shell-model calculations.

The coefficients f K) are determined by the diagonalization of the Hamiltonian matrix in

the subspace spanned by the projected Slater determinants, PM wlon) with —I < K < I and
1 < n < N,. This diagonalization also determines the energy, En, = (Un,|H|UN,), as a
function of N. In the early stage of the development of the MCSM, the wave function is a
linear combination of Slater determinants without angular-momentum projection, or only with
z-component of the angular-momentum projection [12]. We increase N, until Ey, converges
enough, or the extrapolated energy converges.

In the original MCSM calculation, the Slater determinant basis, |¢,,), are selected from many
candidates generated stochastically utilizing the auxiliary-field Monte Carlo technique, the detail
of which is summarized in Ref. [7]. Recently, we have introduced an additional procedure, named
sequential conjugate gradient (SCG) process, to obtain better basis states [13]. In this procedure
we determine D™ variationally to minimize En,—n utilizing the conjugate gradient method.

Here, we demonstrate how the original MCSM and the additional SCG process work with
%Ni in the pf shell as an example. The effective interaction is taken as FPD6 interaction [14].
Its M-scheme dimension is 1,084,455,228, which is tractable by recent shell model codes with
the Lanczos method [15]. At the time of the Alphleet-1 project, it was far beyond the limitation
of the Lanczos method, and the MCSM enabled us to discuss the shape co-existence of ®6Ni.
Since *Ni has been studied further by shell model calculations [16], it should be a good example
for a benchmark test.
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Figure 2. Energy convergence for the ground state of 5Ni. against number of basis states.
The blue open squares and red filled circles denote the result of the original MCSM and that of
the SCG method, respectively.

o028
(a) orig. MCSM (b) SCG

203.0

Energy (MeV)

-203.2

0 2 4 0 2 4 6
Energy variance (MeVz)

Figure 3. Energy and energy variance of the wave functions provided by (a) the original MCSM,
and (b) SCG method for *Ni. The red lines are fitted for the points. The dashed line denotes
the exact shell-model energy. See text for details.
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Figure 2 shows that the energy expectation values of the MCSM wave function generated by
two kinds of methods converge to the exact shell-model energy with increasing a number of basis
states, Np. The energy of the SCG is much better convergence than that of the original MCSM
method. While the exact shell-model energy is —203.198MeV, that of the original MCSM is
—201.161MeV with 150 basis states. The same energy (—201.161MeV) is reached by the SCG
method with only 30 basis states. The energy of the SCG finally reaches —201.180MeV with
100 basis states. Nevertheless, the small gap between the SCG energy and the exact one, 18keV,
remains. In order to remove this gap, we introduced the energy-variance extrapolation, which
enables us to estimate the exact eigenvalue precisely even in case the Lanczos method cannot
be applied [17].

3.2. Energy variance extrapolation method

The energy-variance extrapolation method is based on the fact that the energy variance of the
exact eigenstate is zero. The energy variance of the approximated wave function is not exactly
zero, but rather small and approaches zero as the approximation is improved. In the framework
of the energy-variance extrapolation, we draw the energy En, = (¥, |H|¥ y,) against the energy
variance (AH?)y, = (Un,|H?| W y,) _Ejzvb- The variance usually approaches zero as IV, increases,
and the point in the energy-variance plot approaches the y-axis. These points are fitted by a
first- or second-order polynomial such as

E = co+ ci(AH?) + co((AH?))?, (4)

where these coeflicients cg, ¢1, and co are determined by a least square fit. By extrapolating the
fitted curve into the y-intercept we obtain the extrapolated energy, namely, cg.

The variational procedure discussed in Sect. 3.1 provides us with a successive sequence of
the wave functions, |¥y,) with 1 < Ny < N,;,, where N, is the maximum of N;,. This sequence
is utilized in the energy-variance extrapolation method. In practice we evaluate the energy Fy;,
and energy variance (AH?)y, for each Nj.

Figure 3 shows the energy and energy variance of the variational wave functions obtained by
the original MCSM and the SCG method in Sect.3.1. As N, increases the energy-variance point
moves smoothly and approaches the y-axis or variance zero. The fitted curves for these points
are shown as red solid lines, and also approach the y-axis smoothly. The extrapolated energies,
or y-intercepts of the fitted curves, agree quite well with the exact one, which is shown as a
dashed line. The minimum variance of the SCG wave function is (AH?)y,—100 = 0.54MeV?,
which is smaller and gives a better approximation than the result of the original MCSM,
<AH2>Nb:150 = 1.04MeV?2. It means that the SCG method improves the accuracy of the MCSM
wave function to a certain extent. Both the extrapolated energies of the original MCSM and
the SCG agree with the exact energy quite well within a keV.

4. Summary

We reported the collaboration projects concerning the MCSM over the latest decade, including
the introduction of Alphleet-1 and Alphleet-2 clusters and the recent code developments for
utilizing state-of-the-art massively parallel computers. As the computational environment
evolves, the code of the MCSM has been developed intermittently. In parallel, the framework of
the MCSM has been extended such as the introduction of the conjugate gradient method and
the energy-variance extrapolation. Currently we have finished the benchmark tests and start
production runs on K computer under the SPIRE project. The recent achievements of this
activity are seen in Refs.[1, 3, 10, 18, 19, 20].
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