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Abstract. The De Donder-Weyl (DW) covariant Hamiltonian formulation of the Palatini first-
order Lagrangian of vielbein (tetrad) gravity and its precanonical quantization are presented.
No splitting into space and time is required in this formulation. Our recent generalization
of Dirac brackets is used to treat the second class primary constraints appearing in the DW
Hamiltonian formulation and to find the fundamental brackets. Quantization of the latter
yields the representation of vielbeins as differential operators with respect to the spin connection
coefficients and the Dirac-like precanonical Schrödinger equation on the space of spin connection
coefficients and space time variables. The transition amplitudes on this space describe the
quantum geometry of space-time. We also discuss the Hilbert space of the theory, the invariant
measure on the spin connection coefficients, and point to the possible quantum singularity
avoidance built in in the natural choice of the boundary conditions of the wave functions on the
space of spin connection coefficients.

1. Introduction
There are several dominating approaches in the literature which aim at quantization of gravity or,
more generally, a synthesis of general relativity and quantum theory. They can be conditionally
classified according to their main strategies:

1) application of standard QFT techniques to the Lagrangians of general relativity theory or
its alternatives (canonical QG, path integral, asymptotic safety),

2) adaptation of the classical GR to the technical requirements or limitations of QFT (LQG,
shape dynamics),

3) postulating the fundamental microscopic dynamics so that classical GR would appear as an
effective or emergent low energy theory (string theory, GFT, induced gravity, quantum/non-
commutative space-times, causal networks).

However, considerably less efforts have been devoted to the fourth logical possibility:

4) a modification or improvement of quantum theoretic formalism and its adaptation to the
geometric context of general relativity.

The distinguished role of time in the formalism and interpretation of quantum theory is one
of the aspects to be overcome in the quantum formalism adapted to the goal of quantization
of general relativity. As this feature of quantum description can be seen as inherited from the
canonical Hamiltonian formalism whose structures underlie canonical quantization, one could
try to find a generalization of canonical Hamiltonian formalism and its quantization in which
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all space-time variables would be treated on an equal footing. Fortunately, such generalizations
are known in the mathematical theory of the calculus of variations of multiple integrals and
there is an infinite variety of covariant finite-dimensional Hamiltonian-like formulations given
by different Lepage equivalents of the Poincaré-Cartan form [1–5]) which, from the point of view
of physics, implement exactly this idea. The simplest of these formulations is known as the De
Donder-Weyl (DW) theory (see e.g. [1, 6, 7]).

The DW Hamiltonian formulation of a field theory given by the first order Lagrangian
L = L(ya, yaμ, x

ν) uses the covariant Legendre transformation to the new set of variables:
polymomenta

pμa :=
∂L

∂yaμ

and the DW Hamiltonian function

H(ya, pμa , x
μ) := yaμ(y, p)p

μ
a − L,

which, for regular theories with

det
∣∣∣∣∂2L/∂yμa∂y

ν
b

∣∣∣∣ �= 0,

enable us to write the field equations in the DW covariant Hamiltonian form:

∂μy
a(x) =

∂H

∂pμa
, ∂μp

μ
a(x) = −

∂H

∂ya
. (1)

The latter look like a multidimensional field theoretic analogue of the Hamilton equations with
all space-time variables treated on an equal footing.

A generalization of Poisson brackets to the DW Hamiltonian formulation [8–10], which is
suitable for quantization, is defined on semi-basic forms on the polymomentum phase space (with
the space-time being the base manifold and the space of field and polymomentum variables being
the fiber) and leads to the Poisson-Gerstenhaber algebra structure with respect to the graded
Lie bracket and a special •-product of forms:

A •B := ∗−1(∗A ∧ ∗B), (2)

called co-exterior.
Just as the canonical quantization proceeds from the mathematical structures of canonical

Hamiltonian formalism, precanonical quantization starts from the mathematical structures
underlying the DW Hamiltonian formulation: the polysymplectic form, Poisson-Gerstenhaber
brackets, DW Hamilton-Jacobi theory, etc.

It was found in our earlier work [11–13] that the quantization of the subalgebra of
precanonically conjugate variables (similar to the Heisenberg algebra) leads to the following
representation of the operators of polymomenta:

p̂νa = −i �κγν ∂

∂ya
, (3)

which act on the Clifford-valued wave functions Ψ(y, x) on the finite dimensional covariant
configuration space of field and space-time variables y and x.

The constant κ of the dimension �1−n in n space-time dimensions appears in precanonical
quantization on the dimensional grounds. Its meaning as the inverse of a very small ”elementary
volume” is obvious e.g. in the representation of the basic (n− 1)-forms

�ν := ∂ν (dx0 ∧ ... ∧ dxn−1)
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in terms of the space-time Clifford algebra elements:

�̂ν =
1

κ
γν .

Note that the approach of precanonical quantization does not modify the microscopic structure
of space-time by any ad hoc assumptions.

The covariant analogue of the Schrödinger equation in precanonical quantization reads

i�κγμ∂μΨ = ĤΨ, (4)

where Ĥ is the DW Hamiltonian operator composed from the partial differential operators with
respect to the field variables, c.f. (3). For the free scalar field y

H =
1

2
pμpμ +

1

2

m2

�2
y2

and the operator Ĥ corresponds to the harmonic oscillator along the field dimension y [11,12,14]:

Ĥ = −1

2
�2κ2 ∂2

∂y2
+

1

2

m2

�2
y2. (5)

The self-adjointness of Ĥ with respect to the inner product

〈Φ|Ψ〉 :=
∫

dy ΨΨ, (6)

where Ψ := Ψ†γ0, and Eq. (4) lead to the conservation law

∂μ

∫
dyΨγμΨ = 0 (7)

which makes the probabilistic interpretation of Ψ(y, x) possible. Note however, that in
pseudoeuclidean space-times the inner product in (6) is indefinite, while the conserved quantity∫

dx

∫
dyΨγ0Ψ (8)

is positive definite (here the notation xμ = (x, t) is used). Hence, the approach of precanonical
quantization implies a generalization of mathematical formalism of quantum theory with an
indefinite metric Hilbert space, where γ0 plays the role of J-operator (see e.g. [15]).

The particle interpretation of the free scalar field is suggested by the spectrum of DW
Hamiltonian operator in (5): κm(N + 1

2) with N ∈ N, which implies that free particles of
mass m correspond to the transitions between the neighbouring eigenstates of DW Hamiltonian
operator.

The relation between the precanonical Schrödinger equation (4) and the functional differential
Schrödinger equation following from canonical quantization:

i�∂tΨ = ĤΨ,

where Ψ = Ψ([y(x)], t) is the Schrödinger wave functional and Ĥ is the functional derivative
operator of the canonical Hamiltonian functional, is established by assuming that there is
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a relation between Ψ and the precanonical wave function Ψ(y, x) restricted to the subspace
Σ : (y = y(x), t = const):

Ψ([y(x)], t) = Ψ([ΨΣ(y(x),x, t)], [y
a(x)]),

and substituting the equation for ∂tΨΣ following from the restriction of (4) to Σ into the chain
rule differentiation

i∂tΨ =

∫
dx Tr

{
δΨ

δΨT
Σ(y

a(x),x, t)
i∂tΨΣ(y

a(x),x, t)

}
. (9)

Then, in the limiting case γ0κ → δ(0), we are able to obtain the functional differential
Schrödinger equation as the consequence of (4) and the expression of the Schrödinger wave
functional in terms of the continuum product of precanonical wave functions [16,17] (c.f. [14,18]):

Ψ = Tr

{∏
x

e−iy(x)γ
i∂iy(x)/κΨΣ(y(x),x, t)

}∣∣∣∣∣
γ0κ→δ(0)

. (10)

The existence of such a relation between precanonical quantization and functional Schrödinger
representation suggests that the standard QFT based on canonical quantization is a singular limit
of QFT based on precanonical quantization when the ”elementary volume” 1/κ is vanishing.
Note also that the map γ0κ → δ(0) is actually the inverse of the ”quantization map” from the
exterior forms to Clifford numbers: �̂0 =

1
κ
γ0, which underlie precanonical quantization, in the

limit of infinite κ.

2. DW Hamiltonian formulation of vielbein/tetrad gravity
Because the Dirac operator enters in the precanonical analogue of the covariant Schrödinger
equation (4), the vielbein formulation of gravity is a more natural framework for precanonical
quantization than the metric formulation used in our earlier work [19]. The latter essentially led
to a hybrid quantum-classical theory (c.f. [20,21]) because a part of the spin connection term in
the curved space-time Dirac operator in (4) can not be expressed and quantized in terms of the
variables of the metric formulation.

Let us consider the first order Palatini type Lagrangian density of Einstein’s gravity with the
cosmological term:

L = 1
κE

ee
[α
I e

β]
J (∂αωβ

IJ + ωα
IKωβK

J) + 1
κE

Λe, (11)

where eμI are the vielbein components, ωIJ
α are torsion-free spin connection coefficients, κE :=

8πG, and e := det ||eaμ||.
The polymomenta associated with the vielbein and spin connection field variables treated as

independent dynamical variables:

pα
eIβ

=
∂L

∂αeIβ
and pα

ωIJ
β

=
∂L

∂αωIJ
β

,

yield the primary constraints of the DW Hamiltonian formalism, viz.

pα
eIβ
≈ 0, pα

ωIJ
β
≈ 1

κE
ee

[α
I e

β]
J . (12)

Consequently, not all space-time gradients of vielbein and spin connection fields can be expressed
as functions of polymomenta and fields and we need to develop an analogue of the constraints
analysis within the DW formalism.
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Notwithstanding the fact that a mathematical literature related to the DW Hamiltonian
theory with constraints exists [22–28], the analysis suitable for the purposes of quantization,
though incomplete, seems to be found only in our paper [29]. The idea of that paper is to
use the (n− 1)-forms constructed from the constraints and their Poisson-Gerstenhaber brackets
found within the DW formalism in our earlier papers [8–10], and to try to find a generalization
of the Dirac’s treatment of constrains in the Hamiltonian formalism of mechanics to the DW
Hamiltonian formalism in field theory.

Following this line and using the primary constraints (12), let us write down an extended
DW Hamiltonian density

H = − 1
κE

ee
[α
I e

β]
J ωα

IKωβK
J − 1

κE
Λe+ μI

αβp
α
eIβ

+ λIJ
αβ

(
pα
ωIJ
β
− 1

κE
ee

[α
I e

β]
J

)
, (13)

where μ and λ are the Lagrange multipliers. The DW Hamiltonian equations given by H yield:

∂αe
I
β = μI

αβ , ∂[αω
IJ
β] = λIJ

αβ , (14)

∂αp
α
eIβ

= − ∂H

∂eIβ
, ∂αp

α
ωIJ
β

= − ∂H

∂ωIJ
β

. (15)

The first equation in (15) and the second one in (14) reproduce, on the constraints subspace, the
Einstein equations. The second equation in (15) and the first one in (14) lead to the covariant
constancy condition:

∇β(ee
[α
I e

β]
J ) = 0, (16)

which can be transformed into the expression of the spin connection in terms of vielbeins and
their derivatives.

Equations (14), (15) are equivalent to the preservation of semi-basic (n−1)−forms constructed
from the constraints (12):

CeIβ
:= pα

eIβ
�α, CωIJ

β
:= pα

ωIJ
β
�α − 1

κE
ee

[α
I e

β]
J �α. (17)

By calculating the brackets of those forms using the local coordinate expression of the
polysymplectic form introduced in our papers [8–10]:

Ω = dpα
eIβ
∧ deIβ ∧�α + dpα

ωIJ
β
∧ dωIJ

β ∧�α, (18)

we obtain:

{[Ce,Ce′ ]} = 0,

{[Cω,Cω′ ]} = 0, (19)

{[CeKγ
,CωIJ

β
]} = − 1

κE

∂

∂eKγ

(
ee

[α
I e

β]
J

)
�α,

were the bracket of two semi-basic Hamiltonian (n− 1)-forms F and G is defined as follows:

{[F,G ]} := −XF dG, (20)

where
XF Ω := dF.

From (19) we conclude that the primary constraints in (12) are second class.
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We use our generalization of Dirac bracket to the singular DW Hamiltonian formalism [29]:

{[F,G ]}D := {[F,G ]} − {[F,CU ]} • (C−1UV ∧ {[CV , G ]}) , (21)

where the indices U, V run over all components of e and ω and the inverse of the form-valued
matrix CUV := {[CU ,CV ]} is defined by

C−1UV ∧ CV U ′ := σ�δUU ′ , (22)

where σ = (−)1 is the (pseudo)euclidean signature of the metric, dxμ ∧ �ν =: δμν�, and σ�•
is the unit operator when acting on any semi-basic form, Then we can obtain the following
brackets of precanonically conjugate variables on the subalgebra of (n− 1)-forms:

{[pαe�α, e
′�α′ ]}D = 0, (23)

{[pαω�α, ω
′�α′ ]}D = {[pαω�α, ω

′�α′ ]} = δω
′

ω �α′ , (24)

{[pαe�α, pω ]}D= {[pαe�α, ω
′�α′ ]}D= {[pαω�α, e

′�α′ ]}D= 0, (25)

and similar precanonical brackets of (n − 1)- and 0-forms, which also constitute a subalgebra
with respect to the Poisson-Gerstenhaber bracket operation:

{[pαe�α, e
′ ]}D = 0, (26)

{[pαω�α, ω
′ ]}D = {[pαω�α, ω

′ ]} = δω
′

ω , (27)

{[pαe�α, pω ]}D= {[pαe�α, ω ]}D= {[pαω�α, e ]}D= 0, (28)

and

{[pαe , e′�α′ ]}D = 0, (29)

{[pαω, ω′�β ]}D = {[pαω, ω′�β ]} = δαβ δ
ω
ω′ , (30)

{[pαe , pω�α′ ]}D= {[pαe , ω�α′ ]}D= {[pαω, e′�α′ ]}D= 0. (31)

The following remarks regarding the above calculation are in order. Note that the formula in
(21) assumes that C−1UV exists in the sense of (22) [29]. However, it is not the case for the matrix
defined by (19):

CUV :=

∥∥∥∥ 0 Ceω

Cωe 0

∥∥∥∥ , (32)

where Ceω := {[Ce,Cω ]} is a rectangular matrix (16×24 in n = 4 dimensions). In the usual
Dirac’s Hamiltonian formalism it would signal that not all of the second class constraints are
found. However, it is not necessarily the case here, because the number of polymomenta is
different from the number of field variables and the analogues of the symplectic matrix in
the polysymplectic formalism are singular matrices similar to the higher dimensional Duffin-
Kemmer-Petiau matrices (c.f. [30]) whose algebraic definition is actually tantamount to the
statement that, up to a sign factor, they are generalized Moore-Penrose inverse to themselves.
More generally than in (22) we can understand C−1UV as a generalized inverse such that

CUU ′ • (C−1U ′V ′ ∧ CV ′V ) = CUV . (33)

Then the specific structure of (32) ensures that the Moore-Penrose-type generalized inverse of
CUV has the same matrix block structure as (32) with Ceω replaced by C−1eω , so that (22) is
fulfilled on the e-subspace, viz.

C−1eU ′ ∧ CU ′e′ = δee′σ�. (34)
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This is the e-subspace inverse which is needed in order to calculate the brackets in (23), (26),
and (29). For example, by denoting pe := pαe�α, we obtain:

{[e′, pe ]}D = {[e′, pe ]} − {[e′,Ce′′ ]} •
(
C−1e′′ω ∧ {[Cω, pe ]}

)
= −δee′ + δe

′′
e′ •

(
C−1e′′w ∧ Cwe

)
= 0, (35)

which is the result in (26). All other brackets in (23)-(31) are vanishing as a consequence of the
specific matrix block structure of CUV and its generalized inverse.

The brackets in (23)-(31) are assumed to be the analogue of the fundamental Dirac brackets
of canonical variables in constrained mechanics and they underlie the quantization procedure
below.

3. Quantization
Usually, quantization of systems with second class constraints is performed by transforming the
Dirac brackets into commutators according to the Dirac’s quantization rule. However, in the
present approach the latter has to be modified in order to make sure that densities are quantized
as density valued operators, viz.

[Â, B̂] = −i� ̂e{[A,B]}D, (36)

where (the operator of) e appears due to the fact that the polysymplectic form and polymonenta
are densities.

Now, quantization of brackets in (23), (25), (26), (28), (29), (31) and the constraint pe ≈ 0
lead us to the conclusion that the operators of the conjugate polymomenta of vielbeins are zero:
p̂e = 0. We can, therefore, set our precanonical wave function to depend only on the spin
connection and space-time variables, i.e. Ψ = Ψ(ωIJ

α , xμ).
Further, quantization of the Dirac bracket in (27) yields

̂pα
ωIJ
β

�α = −i�ê ∂

∂ωIJ
β

. (37)

Moreover, by quantizing (30), which coincides with the familiar bracket of polymomenta and
field variables that underlies precanonical quantization in flat space-time [11,12], we obtain the
formal representation of polymomenta:

p̂α
ωIJ
β

= −i�κ ...̂e γ̂
[α ∂

∂ωIJ
β]

... , (38)

where the density ê and the curved space-time Dirac matrices γ̂α are yet unknown operators,

and
... stands for a potential operator ordering ambiguity. Note that when obtaining (38) we still

assumed that

�̂ν =
1

κ
γ̂ν , (39)

which is just a formal generalization of the relation known from precanonical quantization in flat
space-time [11,12], as far as the explicit operator representation of γ̂ν is not known explicitly.

Next, let us insert the precanonical operator representation of p̂αω, Eq. (38), into the strong
operator version of the second constraint in (12) and contract it with flat γ̄IJ -s:

(ee
[α
I e

β]
J γ̄IJ)op = êγαβ = κE(p

α
ωIJ
β
γ̄IJ)op, (40)

where ()op replaces the hat over the longer expressions and

γ̂ν := êνI γ̄
I ,
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where γ̄I γ̄J + γ̄J γ̄I = 2ηIJ , ηIJ is a fiducial flat Minkowski metric with the signature +−−...−,
and γ̄IJ := γ̄[I γ̄J ]. A comparison with (38) yields the operator representation of the curved
space-time Dirac matrices:

γ̂β = −i�κκE γ̄IJ ∂

∂ωIJ
β

, (41)

vielbeins:

êβI = −i�κκE γ̄J ∂

∂ωIJ
β

, (42)

and the polymomenta conjugate to spin connection:

p̂α
ωIJ
β

= −�2κ2κE ê γ̄KL ∂

∂ωKL
[α

∂

∂ωIJ
β]

, (43)

where the operator of e can now be constructed from (42):

ê =

(
1

n!
εI1...Inεμ1...μn ê

μ1

I1
...êμn

In

)−1
. (44)

We can also obtain the operators of (n − 1)-volume elements (39), that leads to a rather
complicated non-local expression:

ω̂ν =
1

κ(n− 1)!
ê ενμ1...μn−1 γ̂

μ1 ...γ̂μn−1 , (45)

and the operator of the metric tensor gμν :

ĝμν = −�2κ2κ2Eη
IJηKL ∂2

∂ωIK
μ ∂ωJL

ν

. (46)

Finally, using (43) we construct the DW Hamiltonian operator Ĥ which corresponds to the
DW Hamiltonian density restricted to the subspace of constraints (12), eH := H|C :

Ĥ = �2κ2κE γ̄
IJ ...ω[α

KMωβ]M
L ∂

∂ωIJ
α

∂

∂ωKL
β

...− 1

κE
Λ . (47)

4. Covariant Schrödinger equation for quantum gravity
The precanonical covariant Schrödinger equation which generalizes Eq. (4) to the context of
quantum gravity will have the form

i�κ /̂∇Ψ = ĤΨ, (48)

were /̂∇ := (γμ(∂μ + ωμ))
op with the spin connection term ωμ := 1

4ωμIJ γ̄
IJ is what we called

the ”quantized Dirac operator”, because the Dirac matrices and the spin connection term in it
are now operators themselves. Using the operator representation of the curved space γ-matrices
in (41) we obtain:

/̂∇ = −i�κκE γ̄IJ ... ∂

∂ωIJ
μ

(
∂μ +

1

4
ωμKLγ̄

KL

)
... . (49)

Therefore, the precanonical counterpart of the Schrödinger equation for quantum gravity takes
the form

γ̄IJ
...

(
∂μ +

1

4
ωμKLγ̄

KL − ωK
μMωML

β

∂

∂ωKL
β

)
∂

∂ωIJ
μ

...Ψ +
Λ

�2κ2κ2E
Ψ = 0 (50)
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and determines the wave function Ψ(ω, x) or, more generally, the transition amplitudes
〈ω, x|ω′, x′〉. The latter provide an inherently quantum description of the geometry of space-time
which generalizes classical differential geometry with its smooth connection fields ω(x).

Let us note that the combination of the constants including κ in the last term of (50)
is dimensionless. By fixing the operator ordering in (50) we would generate a dimensionless
constant of the order ∼ n6 (the number of components of ω-s is ∼ n3) which can be interpreted
as the cosmological constant Λ devided by �2κ2κ2E . In this case, however, the observable value
of Λ is obtained (at n = 4) only if κ is roughly at the nuclear energy scale, which is far away from
our original expectation that κ is at about the Planck scale and contradicts the experimental
evidence that the usual relativistic space-time holds even at TeV scale. On the other hand, if
we take κ at the Planck scale then we arrive at the familiar 120 orders of magnitude error in
the estimation of the cosmological constant, which is usually obtained by using the Planck scale
cutoff in the momentum space integration of the zero point energies. This rather confirms that
the constant κ of precanonical quantization is related to the ultra-violet cutoff scale and that
the cosmological constant problem is not related to the ground state of pure quantum gravity
but rather to the particle composition of the universe.

5. Hilbert space
It is natural to assume that the wave functions Ψ(ω, x) vanish at large values of ω-s. Then the
probability amplitude of observing the regions of space-time with very large curvature is very
small, so that the quantum gravitational singularity avoidance is essentially built in in the choice
of the boundary condition in ω-space.

The scalar product is expected to have the form:

〈Φ|Ψ〉 :=
∫
[dω]ΦΨ,

where [dω] is an invariant measure on the space of spin connection coefficients. Using the
arguments similar to those used by Misner to obtain the invariant measure on the space of
metrics [31], we found:

[dω] = e−n(n−1)
∏

μ,I<J

dωIJ
μ . (51)

Because in the present picture e is an operator given by (44), the measure [dω] is operator valued
and the scalar product of the theory has the form

〈Φ|Ψ〉 :=
∫

Φ [̂dω]Ψ. (52)

Then the most natural definition of the expectation values of operators using the scalar product
with the operator valued measure implies the Weyl ordering, viz.

〈Ô〉 :=
∫

Ψ
(
[̂dω]Ô

)
W

Ψ. (53)

When discussing the specific physical problems using the formalism of this paper we will have
to distinguish between the physical aspects and those attributed to the choice of coordinates. The
latter are a macroscopic notion due to the observer’s choice and, therefore, can be implemented
on the average. For example, the choice of the harmonic coordinates on the average leads to the
following condition on the wave function Ψ(ω, x):

∂μ

〈
Ψ(ω, x)

∣∣∣êgμν∣∣∣Ψ(ω, x)
〉
= 0, (54)

which should be solved together with the covariant Schrödinger equation, Eq. (50), and that
makes the problem more complicated.
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6. Conclusion
Quantization of vielbein gravity using the approach of precanonical quantization, which is based
on the De Donder-Weyl covariant Hamiltonian formulation, is discussed. All space-time variables
are treated on an equal footing as generalizations of the time parameter in non-relativistic
mechanics. No global splitting to space and time is required.

The DW Hamiltonian formulation of the first order Palatini action of vielbein gravity leads to
the second class primary constraints which are treated using our recent generalization of Dirac
bracket to the DW formalism [29]. The consideration of the fundamental generalized Dirac
brackets of precanonically conjugate variables, Eqs. (23)-(31), leads to the conclusion that the
quantum dynamics of gravity can be formulated using the wave functions on the space of spin
connection coefficients and space-time variables. The operators of vielbeins, metric tensor, DW
Hamiltonian operator and the quantized Dirac operator which enters the covariant precanonical
Schrödinger equation of quantum gravity are explicitly constructed. We also discuss the Hilbert
space of the theory and the invariant operator-valued integration measure on the space of spin
connection coefficients. Let us note that the resulting (still tentative) formulation of quantum
gravity is non-perturbative, covariant and background independent.

However, it is not clear at this stage if the consideration of the fundamental Dirac brackets
in (23)-(31) is sufficient, because on the subalgebra of 0- and (n−1)-forms we can also calculate
brackets between the forms composed from vielbeins and spin connection coefficients, such as
{[e, ω �μ ]}D ∼ ∂μ C−1ew , which explicitly depend on the complicated nonlinear expression of the
generalized inverse of the rectangular matrix Cew in (19) and cannot be quantized directly using
the Dirac’s quantization rule (36).

Among the issues left beyond the scope of the paper there are the details of the choice of the
coordinate (gauge) conditions on the average (c.f. [32]), which are not sufficiently clear to us,
and the issues related to the indefinite inner product Hilbert space appearing in the formalism of
the theory. We were also unable so far to demonstrate that the present formulation reproduces
the Einstein equations on the average or in the classical limit. We hope to elaborate on those
issues in the forthcoming publications.
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[4] Krupková O 2002 Hamiltonian field theory J. Geom. Phys. 43 93-132
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