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Abstract. Hamiltonian formulation of quantum dynamics and nonlinear constraints are used
to derive dynamical equations of a hybrid classical-quantum system. Starting with a compound
quantum system in the Hamiltonian formulation, conditions for classical behavior are imposed
on one of its subsystems and the corresponding hybrid dynamical equations are derived. The
dynamical equations for hybrid systems in pure and in mixed states indicate that the hybrid
systems have properties that are not exhausted by those of quantum and classical systems.

1. Introduction
Classical and quantum theories have developed different formalisms to successfully describe
interactions between systems belonging to their respective domains. Correlations between
quantum objects are kinematically captured by direct product structure of Hilbert spaces
adopted to the linear evolution. On the other hand compound classical systems are described
on the Cartesian product of the component’s phase spaces. In this work the framework of
Hamiltonian dynamical systems is used to treat the hybrid quantum-classical systems and to
develop a description of the interactions within such systems which is consistent with the main
physically justified requirements. The Hamiltonian framework was used in [1] to develop a
description of the hybrid classical-quantum systems by treating both, quantum and classical,
formally as Hamiltonian systems described in the Hamiltonian language. The coupling between
the systems is introduced somewhat ad hoc as if both systems were classical, just because they
are both described in the framework of the Hamiltonian dynamical systems. This assumption
about the treatment of compound systems is not trivially obvious. For example, such treatment
of coupling between two quantum systems, both separately described in the Hamiltonian
framework, would be incorrect. In this paper we start with the total compound quantum
system in the geometric Hamiltonian framework [2]. The next step is to consider a classical
limit of one of the component systems. To this purpose we utilize our recently developed theory
of general quantum constraints within the Hamiltonian approach [3], and the corresponding
description of the classical limit [4, 5]. The Hamiltonian form of the derived evolution equations
of the hybrid system turns out to be the same as the one postulated in Ref. [1] and therefore
satisfies a list of standard requirements collected and tested in [1]. We also study the evolution
of general ensembles of hybrid system, and demonstrate that, consistently with the nonlinear
pure states evolution, the ensembles evolve in such a way that initially equivalent mixed states of
the quantum degrees of freedom become nonequivalent. Non-unitary evolution of the quantum
degrees of freedom in a hybrid system suggests that the hybrid systems, if existent, must be
considered as conceptually independent class and not as such whose properties are exhausted
by the properties of quantum and of classical systems.
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2. Quantum dynamics as a Hamiltonian dynamical system
Schrödinger dynamical equation on H generates a Hamiltonian dynamical system on an
appropriate symplectic manifold [6, 7, 8, 9]. In fact the Hilbert space H is viewed as a real
manifold M. In general M is an infinite dimensional Euclidean manifold. The point from M
corresponding to the vector |ψ〉 ∈ H is denoted by Xψ. The real manifold M has Riemannian
and symplectic structure. The scalar product on H is decomposed into it’s real and imaginary
parts

〈ψ1|ψ2〉 = G(ψ1, ψ2) + iΩ(ψ1, ψ2). (1)

G is Riemannian metric on M and Ω is symplectic form on M.
M associated with the Hilbert space H can be viewed as a phase space of a Hamiltonian

dynamical system.
Quantum observables Â are represented by functions of the form A(ψ) = 〈ψ|Â|ψ〉. Only

functions of this form, i.e. bilinear, have physical interpretation of quantum observables.
The Poisson bracket of two functions relates to the commutator between corresponding

observables

{A1, A2} =
1

ih̄
〈[Â1, Â2]〉. (2)

The Schrödinger evolution generated by a Hamiltonian Ĥ

ih̄|ψ̇〉 = Ĥ|ψ〉, (3)

is equivalent to the Hamilton’s equations on M

Ẋa
ψ = Ωab∇bH(Xψ). (4)

2.1. Constrained quantum systems
The Hamiltonian framework for quantum systems opens up a possibility to treat nonlinear
constraints [3, 10]. In particular, the formalism of nonlinear constraints provides a natural
framework to study the classical limit of a quantum system [4, 5].

Constraints are generally given by a set of k independent functional equations

fl(X) = 0, l = 1, 2, . . . , k. (5)

which define a submanifold Γ of M
Equations of motion of the constrained system are obtained using the method of Lagrange

multipliers. In the Hamiltonian form:

Ẋ = Ω(∇X,∇Htot), Htot = H +
k∑
l=1

λlfl, (6)

that should be solved together with the equations of the constraints (5).
The Lagrange multipliers λl are to be determined from the following conditions

0 = ḟl = Ω(∇fl,∇Htot) (7)

= Ω(∇fl,∇H) +
k∑

m=1

λmΩ(∇fl,∇fm). (8)

If one does not know the structure of Γ than one can follow Dirac’s procedure. For this,
the constraints have to be regular. The case of interest here involves precisely the irregular
constraints that cannot be easily replaced, in the general case, by an equivalent set of regular
constraints. However, one often knows that the manifold determined by the constraints Γ is a
symplectic submanifold of M. In this case one knows that: Htot|Γ = H|Γ, i.e. the constrained
system is a Hamiltonian system on Γ and it’s Hamiltonian is simply H|Γ.
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2.2. Example: System of oscillators
The dynamical algebra is ⊗ih4,i represented in the Hilbert space H = L2(Rn). The fundamental

observables are represented by 2n operators (Q̂i, P̂i), i = 1, 2, . . . n, satisfying [Q̂i, P̂j ] = iδi,j and
the Hamiltonian is

Ĥ =
n∑
i=1

1

2mi
P̂ 2
i + V (Q̂1, Q̂2, . . . , Q̂n)

=
n∑
i=1

1

2mi
P̂ 2
i +

miω
2
i

2
Q̂2
i + . . . , (9)

The symplectic phase space M of the Hamiltonian formulation of the quantum
oscillators system is the space of fields on Rn with the symplectic coordinates given by
φ(x1, . . . , xn), π(x1, . . . , xn) (xi ∈ R) where 〈x|ψ〉 = φ(x) + iπ(x) ∈ H. By Xψ we denote
an element from M.

For notational simplicity we continue with only one nonlinear oscillator. General case is
commented later.

The constraints are given by the following equation

f(X) = fq(X) + fp(X) = 0 (10)

where

fq(X) = (∆Q̂)2 − h̄

2mω
= 0, (11)

fp(X) = (∆P̂ )2 − mωh̄

2
= 0, (12)

The constraint implies an equivalence relation on M (or on H).

X1 ∼ X2 ⇔ q(X1) = q(X2) ∧ p(X1) = p(X2) (13)

where q(Xψ) = 〈ψ|Q̂|ψ〉 . . ..
The manifold determined by the constraint is the symplectic submanifold Γ ⊂ M if fact

Γ = M / ∼, where ∼ is the equivalence relation (13). Each equivalence class contains a single
coherent state |p, q〉. The manifold is parameterized by {p, q}.

The constrained system defined by the Hamiltonian (9) and the constraints (10) preserve
the equivalence classes and preserve the dispersions of the fundamental quantum observables
P̂ , Q̂. The constrained system on Γ represents the coarse-grained description of the (quantum)
nonlinear oscillator.

Γ is symplectic and therefore Htot|Γ = H|Γ i.e. the Hamiltonian of the constrained system

on Γ is simply H(p, q) = 〈p, q|Ĥ|p, q〉.
Htot preserves constant and minimal quantum fluctuations of fundamental observables, while

the evolution with H can in general make them quite large.
We turn to the macro-limit. The constrained system satisfies

〈V (Q̂)〉α = V (q) +
∞∑
k=1

(∆Q̂)2k
α

2kk!
V (2k)(q), (14)

where q = 〈Q̂〉α and (∆Q̂)α =
√
h̄/(2mω). Thus, the total Hamiltonian in a point α ≡ (q, p) on

the constrained manifold is

Htot =
p2

2m
+ V (q) +

∞∑
k=1

1

2kk!

h̄kV (2k)(q)

(2mω)k

≡ hcl +
∞∑
k=1

1

2kk!

h̄kV (2k)(q)

(2mω)k
. (15)
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For the system with more than one oscillators, that might be nonlinear and interacting, the
condition that ∆Q̂i and ∆P̂i are simultaneously minimal implies that each of the oscillators is
always in some pure H4 coherent state |αi(t)〉. Thus, the total state |ψ(t)〉 is always given by
the tensor product of the single oscillator’s pure coherent states |ψ(t)〉 = ⊗i|αi(t)〉.

To summarize: We see that the classical system emerges because of:
a) the coarse-grained description of the quantum system and then
b) the macroscopic limit.
It is important to note that the two factors, i.e. the coarse-graining and the macro-limit, are

independent and both are necessary.

3. Hybrid systems
3.1. Derivation of pure states evolution equations
The Hilbert space of a bipartite quantum-quantum system is defined as H1 ⊗ H2 = H. The
corresponding phase space is obtained as M 6= M1 ×M2; The corresponding point from M
has complex canonical coordinates (ψ(x), ψ∗(x)) where ψ(x) ∈ H.

The Poisson bracket of two functions on M is given by

{f1, f2}M =
1

ih̄

∫
dx

(
δf1

δψ(x)

δf2

δψ∗(x)
− δf2

δψ(x)

δf2

δψ∗(x)

)
. (16)

For simplicity we consider the first system to be given by the k−fold product of the Heisenberg
algebras, that is by the basic operators (Q̂1, . . . , Q̂k, P̂1, . . . , P̂k) ≡ (Q̂, P̂ ).

In a hybrid classical-quantum system the total quantum fluctuations of the first subsystem,
that is the sum of dispersions of the basic observables (Q̂, P̂ ) must be preserved minimal during
the evolution:

F (Xψ) =
k∑
i=1

((∆Q̂i)
2
ψ + (∆P̂i)

2
ψ)−min = 0. (17)

The evolution of the fully quantum composite system must be modified in such a way that
the constraint is respected.

The manifold Γ̄ of the constraint is a nonlinear symplectic submanifold of M locally
isomorphic with the Cartesian product Γ1×M2. Γ1 is the manifold of the standard Heisenberg
algebra minimal uncertainty coherent states of the first subsystem, denoted by |α〉 or |q, p〉, and
M2 ∼ H2 is the quantum phase space of the second subsystem.

At each point |C〉〉 of Γ̄ given by

|C〉〉 = |α〉|ω2〉 ≡ |q, p〉|ω2〉, (18)

there are local symplectic coordinates (q, p, ω2(x2), ω∗2(x2)) expressed in terms of |C〉〉 as q =

〈〈C|Q̂|C〉〉, p = 〈〈C|P̂ |C〉〉 and ω2(x2) = 〈x2|〈q, p|C〉〉.
The constrained manifold Γ̄ is symplectic. Therefore, the constrained system is Hamiltonian

with the Hamilton’s function given by the original Hamilton’s function 〈〈ψ|Ĥ|ψ〉〉 evaluated on
the constrained manifold. Therefore, the dynamics is generated by the Poisson bracket on M
and the Hamiltonian

Ht = 〈〈C(ψ)|Ĥ|C(ψ)〉〉 = 〈〈ψ|q, p〉〈q, p|Ĥ|q, p〉〈q, p|ψ〉〉
≡ 〈〈ψ|Ĥα(q, p)|ψ〉〉, (19)

where Ĥα(q, p) ≡ |q, p〉〈q, p| ⊗ 〈q, p|Ĥ|q, p〉. In fact the constrained evolution of an arbitrary

function-observable A(ψ) = 〈〈ψ|Â|ψ〉〉 on the constrained manifold is obtained by reducing the
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following equation

Ȧ(ψ) = {A(ψ), Ht}M

=
1

ih̄

∫
dx

(
δA(ψ)

δψ(x)

δHt

δψ∗(x)
− δHt

δψ(x)

δA(ψ)

δψ∗(x)

)
(20)

on the constrained manifold Γ̄.
For example, before reduction on Γ̄ the dynamical equation for q = 〈〈ψ|Q̂|ψ〉〉 and p =

〈〈ψ|P̂ |ψ〉〉 are given by

q̇ =
1

ih̄
〈〈ψ|[Q̂, Ĥα]|ψ〉〉+

∂Ht

∂p
, (21)

ṗ =
1

ih̄
〈〈ψ|[P̂ , Ĥα]|ψ〉〉 − ∂Ht

∂q
. (22)

In fact, for an arbitrary operator Â1 acting only in H1 one has 〈〈ψ|[Â1, Ĥα]|ψ〉〉|Γ̄ = 0.
Therefore, the dynamical equations for the first system’s coordinates and momenta are

q̇ =
∂Ht

∂p
, ṗ = −∂Ht

∂q
, (23)

where Ht = 〈〈C(ψ)|Ĥ|C(ψ)〉〉.
Dynamical equations for functions of the form

ω2(x2) ≡ 〈x2|ω2(ψ)〉 = 〈x2|〈q, p|ψ〉〉 (24)

are obtained as follows.
Starting again with the equation

ω̇2(x2) =
1

ih̄

∫
dx

(
δω2

δψ(x)

δHt

δψ∗(x)
− δHt

δψ(x)

δω2

δψ∗(x)

)
(25)

and after somewhat lengthy calculation one obtains before the reduction on Γ̄

ih̄ ω̇2(x2) = 〈x2|〈q, p|Ĥ|q, p〉|ω2〉

+

(
q

2

∂Ht

∂q
+
p

2

∂Ht

∂p

)
ω2(x2)

+
i

h̄
〈x2|〈q, p|(p̂− p/2)|ψ〉〉〈〈ψ|[q̂, Ĥα]|ψ〉〉

− i

h̄
〈x2|〈q, p|(q̂ − q/2)|ψ〉〉〈〈ψ|[p̂, Ĥα]|ψ〉〉. (26)

Upon reduction on the constrained manifold Γ̄ the last two terms are annulled and after
dropping the pure phase term the relevant dynamical equations can be written in the form

ih̄ ω̇2(x2;ψ) = 〈x2|〈α(ψ)|Ĥ|α(ψ)〉|ω2(ψ)〉. (27)

The equation has the form of a Schröedinger equation for the state vector ω2(x2;ψ) =

〈x2|〈q, p|ψ〉〉 ∈ H2, with the Hamiltonian operator 〈α(ψ)|Ĥ|α(ψ)〉 acting on H2 and depending

on q = 〈〈ψ|Q̂|ψ〉〉 and p = 〈〈ψ|P̂ |ψ〉〉.
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The Poisson bracket on Γ̄ for arbitrary functions on Γ̄ represented in the local coordinates
(q, p, ω2, ω

∗
2) is

{f1, f2}Γ̄ =
k∑
i=1

(
∂f1

∂qi

∂f2

∂pi
− ∂f2

∂qi

∂f1

∂pi

)
+

1

ih̄

∫
dx2

(
δf1

δω2(x2)

δf2

δω∗2(x2)
− δf2

δω2(x2)

δf1

δω∗2(x2)

)
. (28)

The Hamiltonian form of the hybrid dynamics on the constrained phase space manifold Γ̄ reads

q̇ = {q,Ht}Γ̄, ṗ = {p,Ht}Γ̄, (29)

ω̇2 = {ω2, Ht}Γ̄, ω̇∗2 = {ω∗2, Ht}Γ̄, (30)

where the Hamilton’s function Ht(q, p, ω2(x2), ω∗2(x2)) is given by Ht = 〈〈C(ψ)|Ĥ|C(ψ)〉〉 and
|C〉〉 = |q, p〉|ω2〉.

The constrained dynamics which preserves minimal value of the quantum fluctuations of one
of the subsystems is only the first step. The second step is the relevant macro-limit so that
the minimal quantum fluctuations, still present in the corresponding coherent states, can be
neglected when compared with actual values of the dynamical variables.

Therefore in the macro-limit the replacement

〈〈C(ψ)|F̂ (Q̂, P̂ )|C(ψ)〉〉 → F (q, p) (31)

should be applied in the equations relevant for the first subsystem.

3.2. Ensembles of hybrid systems
For convenience, we denote the canonical coordinates in Mq of Mc ×Mq by (x, y). Quantities
defined exclusively as functions on Mq (Mc) are referred on as quantum degrees of freedom or
QDF.

Consider a general probability density ρ(p, q, x, y) on the total hybrid phase space M =
Mc ×Mq[11].

In general, following the Hamiltonian formulation of the hybrid system dynamics, the
evolution of ρ(p, q, x, y; t) considered as a statistical ensemble on M is given by the Liouville
equation

∂

∂t
ρ(p, q, x, y; t) = {Ht(p, q, x, y), ρ(p, q, x, y; t)}M. (32)

We shall argue that the most general statistical ensembles of hybrid systems need to be
represented by general probability densities ρ(p, q, x, y; t).

The density ρ(p, q, x, y; t) generates a unique positive operator valued function (POVF):

ρ̂(p, q; t) =

∫
Mq

ρ(p, q, x, y; t)Π̂(x, y)dMq, (33)

where Π̂(x, y) is the projection onto the vector form H2 corresponding to the point (x, y).
ρ̂(p, q; t) can be called the hybrid statistical operator. It contains less information about the
hybrid system state then the density ρ(p, q, x, y; t).

The unconditional mixed state of the quantum subsystem of the hybrid in the state
ρ(p, q, x, y; t) is also uniquely obtained as

ρ̂(t) =

∫
M
ρ(p, q, x, y; t)Π̂(x, y)dM. (34)
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Many hybrid ensembles, represented by different ρ(p, q, x, y; t0), have the quantum subsystem
in the same conditional or unconditional mixed state. Each different ρ(p, q, x, y; t0) describes
physically different ensembles of hybrid systems with the quantum subsystem in the same mixed
state. The differences are manifested in the evolution of ρ̂(x, y; t) and ρ̂(t).

In the purely quantum case all different ρ(x, y; t0) with the same first moment correspond to
the physically equivalent quantum mixture ρ̂(t0), and generate unique von Neumann evolution
of ρ̂(t) which is obtained from the Liouville evolution of any such ρ(x, y; t). Therefore, all such
ρ(x, y; t) are equivalent in the purely quantum case. In the hybrid case, different ρ(p, q, x, y; t0)
which give the same ρ̂(p, q; t0) (or ρ̂(t0)) generate different evolution of ρ̂(p, q; t) (or ρ̂(t)) and
thus must be considered as physically different.

The evolution equation for ρ̂(p, q) is

∂ρ̂(p, q; t)

∂t
=

1

ih̄
[Ĥq+V̂int(p, q), ρ̂(p, q; t)] + {Hc(p, q), ρ̂(p, q; t)}p,q

+

∫
Mq

{Vint(p, q, x, y), ρ(p, q, x, y; t)}p,q Π̂(x, y)dMq. (35)

The solution remains a well defined statistical operator on H for all t, which is a desirable
property not shared by some other hybrid system theories.

The dynamical equation for ρ̂(t) is

dρ̂(t)

dt
=

1

ih̄
[Ĥq, ρ̂(t)] +

1

ih̄

∫
Mc

[V̂int(p, q), ρ̂(p, q; t)]dMc

+

∫
Mc

{Hc(p, q), ρ̂(p, q; t)}p,qdMc

+

∫
M
{Vint(p, q, x, y), ρ(p, q, x, y; t)}p,q Π̂(x, y)dM

=
1

ih̄
[Ĥq, ρ̂(t)] +

1

ih̄

∫
Mc

[V̂int(p, q), ρ̂(p, q; t)]dMc. (36)

The first term on the right side of (36) generates the unitary part of the evolution and the second
term does not preserve the norm of ρ̂ and is responsible for non-unitary effects. Notice that the
evolution of ρ̂(p, q; t) (ρ̂(t)) cannot be expressed only in terms of ρ̂(p, q; t) (ρ̂(t)), but irreducibly
involves the probability density ρ(p, q, x, y; t).

4. Conclusion
The evolution of QDF of a hybrid system is fundamentally different from the linear evolution
of a quantum subsystem of a quantum system. The characteristic main features of the QDF
evolution are expressed by the nonlinearity of the pure state evolution, or by the dynamically
induced differences of ρ̂(t) with different initial convex mixture representations. It is well known
that the linearity of the Schrödinger equation and the equivalence of different convex mixtures are
both necessary in order to prevent superluminal communication in ordinary quantum mechanics
of bipartite systems. If either of the two properties is violated, without further modification
of the quantum formalism, superluminal communication between entangled parts of a bipartite
system is possible. The nonlinear pure state evolution and the evolution dependence on the
initially equivalent different ensembles appears quite naturally in the Hamiltonian description of
hybrid systems, and in the same time the QDF of the hybrid might be in an entangled state [12].
Therefore, superluminal communication can be avoided only by some further modification of the
scheme. It has been argued that the direct product might not be the natural type of coupling
between systems with nonlinear evolution [13], and that nonlinear evolution might suggest non-
standard computation of correlations [14]. Alternatively, one might consider the model of hybrid
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systems presented here as insufficient to describe fully the true features of coupled real quantum
and real classical systems. One might try to incorporate back-reaction of the classical system
on quantum fluctuations, like for example in [15], or one might explore the possibilities opened
up by replacing a simple classical system by truly complex classical systems with many degrees
of freedom [1, 12].
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