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Abstract. Free and weakly interacting particles perform approximately Gaussian random
walks with collisions. They follow a second-quantized nonlinear Schrödinger equation, or
relativistic versions of it. By contrast, the fields of strongly interacting particles extremize more
involved effective actions obeying fractional wave equations with anomalous dimensions. Their
particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more
frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong
windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may
destroy entire cities, the latter have the potential of devastating entire economies.

1. Introduction

Since the bestselling book “The Black Swan” by N.N. Taleb [1], the “disproportionate role of

high-profile, hard-to-predict, and rare events that are beyond the realm of normal expectations in

history, science, finance, and technology”, has moved into public awareness, thereby contrasting
previous bestesellers focusing on Gaussian distributions [3]. Since the last financial crash and the
recent “flash crash” [4] that has appeared in 2010 [4] with the approach of nanosecond-trading
in stockmarkets, the dangers of such events for the world economy have become so worrisome
that also politicians begin to get worried.

2. Second-quantized field theory

The purpose of this lecture is to incorporate them into our present description of particle physics.
The quantum-mechanical phenomena of fundamental particles is explained with high accuracy
by Schrödinger theory. The wave equation for many particles can convenienty be reformulated
as a second-quantized field theory , with an action that is the sum of quadratic and an interacting
term

A = A2 +Aint, (1)

where the term A2 has typically the form

A2=

∫

dDxdtψ∗(x, t)[i∂t+h̄
2∇2/2m−V (x)]ψ(x, t), (2)
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with D being the space timension, m the mass, and V (x) some external potential. The
interaction term Aint may be approximated in molecular systems by a fourth-order term in
the field

Aint =
1

2

∫

dDxdDx′dtψ∗(x′, t)ψ∗(x, t)V12(x,x
′)ψ(x, t)ψ(x′, t), (3)

where V12(x,x
′) is some two-body potential.

If relativistic velocities are present, the field is generalized to a scalar Klein-Gordon field, or
a quantized Dirac field. In molecular physics, the fourth-order term is due to the exchange of
a minimally coupled quantized photon field and is proportional to e2, where e is the electric
charge. The field equations may be studied with any standard method of quantum field theory,
and corrections can be derived using perturbation theory in powers of α ≡ e2/h̄ ≈ 1/137. Since
α is very small, this appeoch is quite successful.

If time is continued analytically to imaginary values t = iτ , one is faced with the so-called
Euclidean version of quantum field theory. Then perturbation theory may be understood as
developing a theory of particle physics from an expansion around Gaussian random walks.
Indeed, the relativistic scalar free-particle propagator of mass m in D+1-dimensional euclidean
energy-momentum space pµ = (p, p4), has the form

G(p) =
1

p2 + p24 +m2
=

∫ ∞

0
ds e−sm

2
e−s(p

2+p24), (4)

where the energy has been continued analytically to p4 = −iE. The Fourier transform of
e−s(p

2+p24) is the distribution of Gaussian random walks of length s in D+1 euclidean dimensions

P (x, x4) = (4πs)−(D+1)/2e−(|x|2+x24)/4s, (5)

which makes the propagator (4) a superposition of such walks with lenghts distributed like e−sm
2

[5, 6, 7]. This propagator is the relativistic version of the free-field propagator of the action (2).
The second-quantized field theory described by (1) accounts for grand-canical ensembles of orbits
with their two-body interactions [8].

Gaussian random walks are a natural and rather universal starting point for many stochastic
processes. For instance, they form the basis of the most important tool in the theory of financial
markets, the Black-Scholes option price theory [9] (Nobel Prize 1997), by which a portfolio of
assets is hoped to remain steadily growing through hedging. In fact, the famous central-limit

theorem permits us to prove that many independent random movements of finite variance always
pile up to display a Gaussian distribution [10].

However, since the last stock market crash and the still ongoing financial crisis it has become
clear that realistic distributions belong to a more general universality class, the so-called Lévy
stable distribution. They are the univarsal results of a pile up of random movements of infinite
variance [11]. They account for the fact that rare events, which initiate crashes, are much more
frequent than in Gaussian distributions. These are events in the so-called Lévy tails ∝ 1/|x|1+λ

of the distributions, whose description requires a Hamiltonian [7]

H = const (p2)λ/2. (6)

Such tail-events are present in the self-similar distribution of matter in the universe [12, 13, 14],
in velocity distributions of many body sytems with long-range forces [15], and in the distributions
of windgusts [16] and earthquakes [17], with often catastrophic consequences. They are a
consequence of rather general maximal entropy assumptions [18]. In the limit λ → 2, the
Lévy distributions reduce to Gaussian distributions.
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3. Strong-coupling quantum field theory

At this point we observe that such distributions occur quite naturally also in many-particle
systems, provided the interactions are very strong [19]. They have been observed in numerous
experiments at second-order phase transitions. The most accurate measurement of this type was
done in a satellite (the so called Infrared Atronomical Satellite IRAS) by studying the singularity
of the specific heat of superfluid 4He near the critical temperature [20]. The observation agreed
extremely well with the theoretical strong-coupling prediction [21].

The field of a strongly interacting N -body system is usually a multivalued function.
Singularities perforate the space via vortex lines (for instance in type II superconductors or in
superfluid 4He), or via line-like defects in the displacement field of a world-crystal formulation
of Einstein(-Cartan) gravity [?]. If the positions of two particles are exchanged, one obtains a
factor +1 for bosons or −1 for electrons. In two dimensions, one may even obtain a general
phase eiφ (anyons) [26].

A strongly interacting field system has a conformally invariant Green function [23, 24, 26]

G(p, p4) = [p1−γ4 φ(p2/pz4)]
−1. (7)

If the dimension D differs only by a very small amount ǫ from the critical dimension Dc, where
the theory is scale-invariant, i.e., D = Dc + ǫ, then γ is of order ǫ and z differs from unity by a
similar amount. Such a power behavior is assured near Dc if the Gell-Mann-Low function [27]
has an infrared-stable fixed point in the renormalization flow of the coupling constant. Very
close to the critical dimension, a lowest approximation to G(p, p4) is

G(p, p4) = {p1−γ4 [1 +Dλ(p
2/pz4)

λ/2]}−1, (8)

where λ is close to 2, and Dλ is a generalization of the diffusion constant in the Fokker-Planck
equation.

Time-independent propagators involve the limit p4 → 0, where the correlation function
behaves like

G(p, 0) ∝ |p|−2+η. (9)

The index η is the anomalous dimension of the field, which is also of order ǫ. The existence of
this limit in (8) fixes the scaling relation

λ = (2− γ)/z = 2− η. (10)

See Appendix for the calculation of the exponents to order ǫ. The Green function (8) determines
the probability distribution of particle after a time t via the double fractional Fokker-Planck

equation

[p̂1−γ4 +Dλ(p̂
2)λ/2]P (x, t) = δ(t)δ(D)(x), (11)

where p̂4 ≡ ∂t, p̂ ≡ i∂x ≡ i∇. A convenient definition of the fractional derivatives uses
the same formula as in the dimensional continuation of Feynman diagrams (−∇2)λ/2 =

Γ[λ/2]−1
∫

dσσ−λ/2−1eσ∇
2/2 [28, 29]. The solution of (11) is given in the literature [30] and

reads

t−γ

πD/2|x|D/2
H2,1

2,3

(

|x|λ

2λDλt1−γ

∣

∣

∣

∣

(1,1);(1−γ,1−γ)

(1,1),(D/2,λ/2);(1,λ/2)

)

, (12)
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where H2,1
2,3 is a Fox H-function [31]. In the limits γ = 0 and λ = 2, this reduces to the standard

quantum mechanical Gaussian expression (4πDλt)
−D/2e−|x|2/4Dλt. For γ = 0, λ = 1, the result

is

P (x, t) =
Dλt

π(D+1)/2|x|D+1
H1,1

1,1

(

D2
λt

2

|x|2

∣

∣

∣

∣

(1/2−D/2,1)

(0,1)

)

, (13)

which is simply the Cauchy-Lorentz distribution function

[Γ(D/2 + 1/2)/π(D+1)/2]Dλt/[(Dλt)
2 + |x|2]D/2+1/2.

The probability (11) may be calculated from the doubly fractional canonical path integral

over fluctuating orbits t(s),x(s) p4(s),p(s) viewed as functions of some pseudotime s [32]:

{xbtbsb|xatssa} =

∫

DxDtDpDp4e
−A, (14)

where A is the euclidean action of the paths t(s),x(s):

A =

∫

ds[i(px′ − ip4t
′)−H(p, p4)]. (15)

Here t′(s) ≡ dt(s)/ds, x′(s) ≡ dx(s)/ds, and H(p, p4) = p1−γ4 + Dλ(p̂
2)λ/2. At each s, the

integrals over the components of p(s) and p4(s) run from −∞ to ∞, whereas those over p4(s)
run from −i∞ to i∞. At the end we obtain P (x, t) from the integral

∫∞
0 ds{x t s|0 0 0}.

If γ = 0, the path integral over p4(s) yields the functional δ[t′(s) − 1], which brings (14) to
the canonical path integral

(xbtb|xata) =

∫

DxDpe−A′

, (16)

with

A′ =

∫

dt[ipẋ−Dλ(p̂
2)λ/2]. (17)

Now P (x, t) = (xt|0 0) satisfies the ordinary fractional Fokker-Planck equation

[p̂4 +Dλ(p̂
2)λ/2]P (t,x) = δ(t)δ(D)(x). (18)

This has been discussed at length in recent literature [33].
At this place it is worth mentioning that the probability can be written as a superposition

∫∞
0 (dσ/σ)fλ(σt

−2/λ)PG(σ,x) of Gaussian distributions PG(σ,x) = (4πσ)−D/2e−x
2/4σ with

weight

fλ(σ) = SD

∞
∑

n=1

(−1)nσ−nλ/2

(n+ 1)!Γ(D − 1− nλ/2)
D
n/λ
λ , (19)

where SD = 2πD/2/Γ(D/2) is the surface of a sphere in D dimensions.
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4. Stochastic Duru-Kleinert transformation

If γ 6= 0, the above functional δ-function is softened, and the relation between the pseudotime
s and the physical time becomes stochastic. It is governed by the probability distribution that
solves the path integral the

{tbsb|tasa} =

∫

DtDp4 exp

{
∫

ds [p4t
′ − p1−γ4 )]

}

. (20)

For imaginary p4 = −iE, we define a noise Hamiltonian H̃(η) which has the property that
[32, 34]

e−p
1−γ
4 =

∫ ∞

−∞
dηe−p4η−H̃(η). (21)

The inverse of the Fourier integral yields the noise probability P (η) =
∫ i∞
−i∞ dp4e

p4η−p
1−γ
4 , and a probability functional [35]:

P [η] ≡ e−
∫
dsH̃(η)=

∫

Dp4 exp

[
∫

ds (p4η − p1−γ4 )

]

. (22)

Using this we may solve the stochastic differential equation of the Langevin type

t′(s) = η(s), (23)

in which the noise η(s) has a zero expectation value for each s, and the correlation functions for
n = 2, 4, 6, . . . :

〈η(s1) . . . η(s2n)〉 ≡

∫

Dη η(s1) . . . η(s2n)P [η]. (24)

If γ = 0, the solution of (22) is P [η] = δ[η(s)− 1], implying that η(s) ceases to fluctuate, and
(23) becomes t′(s) ≡ 1, so that t ≡ s.

In the past, many nontrivial Schrödinger equations (for instance that of the 1/r-potential)
have been solved with path integral methods by re-formulating them on the pseudotime axis s,
that is related to the time t via a space-dependent differential equation t′(s) = f(x(t)). This
method, invented by Duru and Kleinert [36] to solve the path integral of the hydrogen atom, has
recently been applied successfully to various Fokker-Planck equations [37, 38]. The stochastic
differential equation (23) may be seen as a stochastic version of the Duru-Kleinert transformation
that promises to be a useful tool to study non-Markovian systems.

Certainly, the solutions of Eq. (18) can also be obtained from a stochastic differential equation

ẋ = η, (25)

whose noise is distributed with a fractional probability

P [η] =

∫

DDxe
∫
dt(ip· −Dλ(p

2)λ/2). (26)
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5. Experimental consequences

Experimentally, a system with in the strong-coupling limit can be produced by forming a Bose-
Einstein condensate (BEC) in a magnetic field whose strength is tuned to a Feshbach resonance
[39] of the two-particle interaction. In a BEC, the four-field term in the interaction (3) is local
and parametrized by V12(x,x) ∝ gδ(x − x′). At the Feshbach resonance, the bare coupling
strength g goes to infinity [40], and the renormalized coupling gR, multiplied by 6µ−ǫ/(4π)2,
converges to a fixed point g∗ ≈ 0.503 [see Fig. 17.1 in Ref. [24]), where µ is some mass scale.

The theoretical tool to describe the physics in this regime is the effective action Γ[Ψ,Ψ∗].
This a functional of the classical expectation values of the quantum fields Ψ(t,x) ≡ 〈ψ(t,x)〉,
and contains all information of the full quantum theory [24, 41]. It is the Legendre transform
of the generating functional Z[η, η∗] =

∫

DψDψ∗e−A−η∗ψ−ηψ∗

of the full quantum theory, and
is extremal on the physical field expections. All its vertex functions can be found from the
functional derivatives of Γ[Ψ,Ψ∗]. In the strong-coupling limit, the effective interaction changes
the interaction (3) to an anomalous power law Γint[Ψ,Ψ∗] = (gc/2)

∫

dtdDx |Ψ(t,x)|δ+1. The
power δ is a critical exponent that is measured experimentally by the relation B = |Ψ|δ. Its value
is determined by η via the so-called hyperscaling relation [42] δ = (D+2−η)/(D−2+η). The value
of gc is related to the critical value g∗ ≈ 0.503 by gcµ

−ηD/(D−2+η) = (2g∗)(δ−1)/2(4π)2/24 ≈ 6.7.
As a possible application we may study the behavior of a triangular lattice of vortices which form
in a rotating Bose-Einstein condensate [43], and letting the magnetic field approach a Feshbach
resonance.

The results may then be compared with a calculation based on a new field equation that
generalizes the famous Gross-Pitaevskii equation [44]

[

Ê−
1

2m
p̂2− g|Ψ(t,x)|2

]

Ψ(t,x) = 0. (27)

The new equation is obtained by extremizing the effective action Γ[Ψ,Ψ∗] = Γ0[Ψ,Ψ
∗] +

Γint[Ψ,Ψ∗], where

Γ0 ≡

∫

dtdDxΨ†(t,x)[Ê1−γ −Dλ(p̂
2)λ/2]Ψ(t,x). (28)

By forming δAeff/δΨ†(t,x), we obtain what may be called the fractional Gross-Pitaevskii

equation:
[

Ê1−γ−Dλ(p̂
2)1−η/2−

δ+1

4µη
gc|Ψ(t,x)|δ−1

]

Ψ(t,x)=0. (29)

The fractional Schrödinger equation has many problems, such as the nonvalidity of the
quantum superposition law, the violation of unitarity of the time evolution, and the violation
of probability conservation which can produce nonsensical probabilities > 1 [33]. However,
these problems exist only if we restrict ourselves to the free effective action (28), but this is
meaningless, since the entire theory is only defined by the effective action in the strong-coupling
limit — and this contains necessarily additional nonquadratic terms. Hence it does not possess
free quasiparticles as in the time-honored Landau theory of Fermi liquids [45]. There is always
an interaction that invalidates the standard discussion of Schrödinger equations. In fact, the
theory of high-Tc superconductivity must probably be built as a true strong-coupling theory of
this type with electrons being non-Fermi liquids [45].

The relativistic version of the entire discussion is simpler since it is based on the euclidean
Green function (9) in which p denotes the D − 1-dimensional vectors (p, p4). The Fourier
transform is the distribution fulfilling the Fokker-Planck equation

[∂s + (p̂2)1−η/2]P (s, x̂) = δ(s)δ(D+1)(x). (30)
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and possessing the path integral representation

P (s, x̂) =

∫

DxDpe
∫
ds[ipẋ−(p̂2)1−η/2]. (31)

The ǫ-expansion is now around Dc = 4 in powers of ǫ = −(D − Dc). The critical exponent η
is small of order ǫ2: η = ǫ2/50 + · · · ≈ 0.04. It can be ignored for ǫ = 1. The power δ in the
interaction is 3 + ǫ+ 23ǫ2/50 + · · · ≈ 4.76 [46].

The time-independent fractional Gross-Pitaevskii equation reads now

[

(p̂2)1−η/2+
δ+1

4µη
gc|Ψ(x)|δ−1

]

Ψ(x) = 0, (32)

with gc ≈ 27. For a d = D − 1 -dimensional vortex in D = 3 dimensions, it is solved
by Ψ̃(x) = a|x⊥|

−A with A = (2 − η)/(δ − 1) = D/2 − 1 + η/2 ≈ 1/2 and for µ = 1:
[(δ + 1)aδ−1/4]gc = −dcλ+A−d

dc−1
A−d ≈ 0.2, λ = 2− η [29].

Let us study the appearance of a reduced mass m̂2 ∝ (1 − r2) in the
trap. In the effective action, it will appear in (32) in the form µ2−η(m̂2)ν(2−η)

×f(|Ψ|2/(m̂2)2β) with a Taylor series of f(x) (note that ν(2− η) = 1+ ǫ
5 + · · · ≈ 1.3). For small

m̂2, this may be resummed to a Widom type expression [(δ+1)/4µη]gc|Ψ|δ−1w(m̂2/|Ψ|1/β) [24].
This explains the earlier-stated steeper falloff |Ψ|2 ∝ (m̂2)2β of the density profiles in Fig. 1.
The Widom function w(m̂2/|Ψ|1/β) can be expanded as 1 plus a power series in (m̂2)ω/2ν ∝ ξ−ω

which contains the Wegner critical exponent ω ≈ 0.8 that governs the approach to scaling [25].
Thereby the interaction term |Ψ|δ−1 is modified to |Ψ|δ−1(1 + const× ξ−ω|Ψ|−ων/β). Similarly,
the kinetic term (p̂2)1−η/2 in (27), (32) will receive ω-dependent correction terms and become
(p̂2)1−η/2[1 + ξ−ω/η

∗

m(p̂2)ω/2 + . . . ] [42], with η∗m = 1− 1/2ν ≈ 1/4.
To compare our theory with experimental data, we must study the BEC in the scale-invariant

strong-coupling limit. This is reached either by going to the temperature Tc of the second-order
phase transition, or by raising the magnetic field B towards the field strength Bc of a Feshbach
resonance. Then the coherence length ξ grows like ξ ∝ |t|−ν where ν ≈ 2/3 [24, 50], and
t ≡ 1 − T/Tc or t ≡ 1 − B/Bc ([39]). If the BEC is enclosed in a weak harmonic trap, this
adds in the brackets of (27) a term ∝ |x|2 = R2. This is normally observed by the condensate
density going to zero linearly like 1− r2 ≡ 1−R2/R2

b near the border Rb (in the Thomas-Fermi
approximation) [47]. For B near Bc (or T near Tc), however, the anomalous power δ will lead
to the steeper approach to zero (1 − r2)2β where 2β ≡ ν(D − 2 + η) = 1 − 3ǫ/10 + · · · ≈ 0.7,
plotted in Fig. 1, as will be shown immediately. In addition, the central region is depleted.
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r r

GP

FGP
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ρ = Ψ∗Ψ
ρ = Ψ∗Ψ

Figure 1. Condensate density from Gross-Pitaevskii equation (27) (GP,dashed) and its
fractional version (29 (FGP), both in Thomas-Fermi approximation where the gradients are
ignored. The FGP-curve shows a marked depletion of the condensate. On the right hand, a
vortex is included. The zeros at r ≈ 1 will be smoothened by the gradient terms in (32), as
shown on the left-hand plot.
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6. Summary

Summarizing we have seen that a many-body system with strong couplings between the
constituents satisfies a more general form of the Schrödinger equation, in which the momentum
and the energy appear with a power different from λ = 2 and γ = 0, respectively. The associated
Green function can be written as a path integral over fluctuating time and space orbits that are
functions of some pseudotime s. This is a Markovian object, but non-Markovian in the physical
time t that is related to s by a stochastic differential equation of the Langevin type. The particle
distributions can also be obtained by solving a Langevin type of equation in which the noise has
correlation functions whose probability distribution is specified.

Appendix: The lowest-order critical exponents can be extracted directly from the one-loop-
corrected inverse Green function G−1(E,p) in D = 2+ ǫ dimensions after a minimal subtraction
of the 1/ǫ -pole at [51]:

E−p2+ a
(

1
3p

2−E
)D−1

. (33)

For p = 0, this has a power −(−E)1−aǫ, so that γ = aǫ. For E = 0, on the other hand, we
obtain (−p2)1−aǫ/3, so that (1− γ)/z − 1 ≈ γ/3.
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