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Abstract. I consider the formulation of hybrid cosmological models that consists of a
classical gravitational field interacting with a quantized massive scalar field in the formalism
of ensembles on configuration space. This is a viable approach that provides an alternative to
semiclassical gravity. I discuss a particular, highly nonclassical solution in two approximations,
minisuperspace and spherically-symmetric midisuperspace. In both cases, the coupling of the
quantum scalar field and classical gravitational field leads to a cosmological model which has a
quantized radius of the universe.

1. Introduction

There are a few good reasons to consider hybrid systems in which the gravitational field remains
classical while matter is assumed to consist of quantum fields. A full theory of quantum gravity
is not yet available, and an approximation in which spacetime remains classical while matter
is described in terms of quantum fields is often physically and computationally appropriate.
Furthermore, since the quantization of gravity does not appear to follow from consistency
arguments alone [1], it is of interest to investigate to what extent a hybrid system may provide
a consistent, satisfactory description of matter and gravitation. The study of such systems
can provide valuable clues that may help in the search for a full quantum theory of gravity.
Finally, one must also consider the possibility that the gravitational field may not be quantum
in nature [2, 3, 4]. For example, Butterfield and Isham, while putting forward the point of view
that some type of theory of quantum gravity should be sought, have concluded that there is
arguably no definitive proof that general relativity has to be quantized [5]. Dyson has argued
that it might be impossible in principle to observe the existence of individual gravitons, and this
has lead him to the conjecture that “the gravitational field described by Einstein’s theory of
general relativity is a purely classical field without any quantum behaviour” [6]. His observations
regarding the impossibility of detecting gravitons have been confirmed by detailed calculations
[7, 8]. If Dyson’s conjecture is true, hybrid models become unavoidable.

In the standard approach used for coupling quantum fields to a classical gravitational field
(i.e., semiclassical gravity), the energy momentum tensor that serves as the source in the Einstein

equations is replaced by the expectation value of the energy momentum operator T̂µν with respect
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to some quantum state Ψ:

4Rµν −
1

2
gµν

4R+ λgµν =
κ

2
〈Ψ| T̂µν |Ψ〉 (1)

where 4Rµν is the curvature tensor, 4R the curvature scalar and gµν the metric tensor in
spacetime, λ is the cosmological constant and κ = 16πG (in units where c = 1 and G is the
gravitational constant). This approach, however, presents a number of well known difficulties.
An alternative to semiclassical gravity is provided by the formalism of ensembles on configuration
space [9]. The formalism can be applied to both quantum and classical systems and allows
a general and consistent description of interactions between them. When applied to hybrid
systems, it can be shown that the approach overcomes difficulties arising in previous attempts;
in particular, the correct equations of motion for the quantum and classical sectors are recovered
in the limit of no interaction, conservation of probability and energy are satisfied, uncertainty
relations hold for conjugate quantum variables, and the formalism allows a back reaction of the
quantum system on the classical system [10, 11]. The approach can be generalized to describe
the coupling of a quantized field to a classical gravitational field; it is therefore an appropriate
formalism to use if one wants to investigate hybrid cosmological models.

In the next section, I describe the coupling of a quantized scalar field to a classical
gravitational field using ensembles on configuration space. I then consider a particular,
highly nonclassical solution in two approximations, minisuperspace and spherically-symmetric
midisuperspace. In the last section, I summarize the results and give conclusions. Technical
details are provided in the three Appendices.

2. Equations for a quantized scalar field interacting with a classical metric field

In the approach followed here, the interaction of quantum matter with a classical gravitational
field will be described using the formalism of ensembles on configuration space. A description
of physical systems by means of ensembles on configuration space may be introduced at a very
fundamental level, requiring only the notions of probability and an action principle. Consider the
situation in which the configuration of a physical system is subject to uncertainty. Under these
circumstances, the system must be described by an ensemble of configurations with probability
P . Introduce an action principle to specify the dynamics. In the Hamiltonian formulation, this
implies the existence a function, call it S, that is conjugate to P , a symplectic structure with
its corresponding Poisson bracket algebra, and an ensemble Hamiltonian that is the generator
of time evolution. The state of a given system is therefore completely described by the pair of
functions P and S and time evolution is determined by the choice of ensemble Hamiltonian.

Since the formalism of ensembles on configuration space is not widely known, a detailed, self-
contained introduction is given in Appendix A, where the approach is illustrated using ensembles
that describe classical, quantum and hybrid classical-quantum systems of particles [9, 10, 11]. In
this section, the focus will be on the application of the formalism to the coupling of a quantized
scalar field to a classical gravitational field. I first illustrate the approach for the case of vacuum
gravity [12, 13, 14] and then discuss the formulation for hybrid systems.

The most direct way of introducing a classical configuration space ensemble for gravity is to
start from the Einstein-Hamilton-Jacobi equation, which in the metric representation takes the
form [15]

Hh = κGijkl
δS

δhij

δS

δhkl
− 1

κ

√
h (R− 2λ) = 0, (2)

where R is the curvature scalar and hkl the metric tensor on a three-dimensional spatial

hypersurface, and Gijkl = (2h)−1/2 (hikhjl + hilhjk − hijhkl) is the DeWitt supermetric.
The functional S is assumed to be invariant under the gauge group of spatial coordinate
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transformations, which is equivalent to satisfying the momentum constraints of the canonical
formulation of general relativity. Eq. (2) corresponds to an infinity of constraints, one at each
point. It is possible to introduce an alternative viewpoint [16, 17] in which Eq. (2) is regarded
as an equation to be integrated with respect to a “test function” in which case we are dealing
with one equation for each choice of lapse function N ,

∫
d3x NHh = 0; (3)

i.e. for each choice of foliation. Such an alternative viewpoint is extremely useful: although it
may be impossible to find the general solution (which requires solving the Einstein-Hamilton-
Jacobi equation for all choices of lapse functions), it may be possible to find particular solutions
for specific choices; for example, the choice S ∼

∫
d3x

√
h is a particular solution that describes

de Sitter spacetime in a flat foliation [17].
An appropriate ensemble Hamiltonian for vacuum gravity is given by

H̃h =

∫
d3x

∫
DhP NHh (4)

(technical issues are discussed in more detail in Appendix B and in ref. [14]). The functional P is
also assumed, like S, to be invariant under the gauge group of spatial coordinate transformations.
The corresponding equations have the form

∂P

∂t
=
δH̃h

δS
,

∂S

∂t
= −δH̃h

δP
(5)

where δ/δF denotes the variational derivative with respect to a functional F [12]. Assuming
the constraints ∂S

∂t = ∂P
∂t = 0, these equations lead to Eq. (3), as required, and to a continuity

equation, ∫
d3xN

δ

δhij

(
P Gijkl

δS

δhkl

)
= 0. (6)

These two equations define an ensemble on configuration space for the case of vacuum gravity.
A hybrid system where a quantum scalar field φ couples to the classical metric hkl requires

a generalization of Eq. (4) in which [9]

H̃φh =

∫
d3x

∫
DhP N [Hφh + Fφ] , (7)

where

Hφh = Hh +
1

2
√
h

(
δS

δφ

)2

+
√
h

[
1

2
hij

∂φ

∂xi
∂φ

∂xj
+ V (φ)

]
(8)

is the ensemble Hamiltonian for gravity with a classical scalar field and

Fφ =
h̄2

4

1

2
√
h

(
δ log P

δφ

)2

(9)

is an additional, non-classical kinetic energy term. Assuming again the constraints ∂S
∂t = ∂P

∂t = 0,
the coresponding equations are given by

∫
d3xN

[
Hφh −

h̄2

2
√
h

(
1

A

δ2A

δφ2

)]
= 0, (10)

where A ≡
√
P , and a continuity equation that is identical to Eq. (6).
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3. Hybrid cosmological model in minisuperspace

Before introducing the cosmological model in spherical gravity that is discussed in the next
section, it will be instructive to look at the corresponding minisuperspace model [9].

Consider a closed Robertson-Walker universe with a massive scalar field. The line element
can be written in the form

ds2 = −N2 (t) dt2 + a2 (t) dΩ2
3 (11)

where a is the scale factor and dΩ2
3 is the standard line element on S3. Symmetry reduction leads

to a minisuperspace formulation in a finite dimensional configuration space with coordinates a
and φ [18]. Following Ref. [9], I restrict to a potential term that is quadratic in φ. Then, the
classical Hamilton-Jacobi equation takes the form Hφa = 0, with

Hφa = −1

a

(
∂S

∂a

)2

+
1

a3

(
∂S

∂φ

)2

− a+
λa3

3
+m2a3φ2, (12)

wherem is the mass of the field and the units of this section have been chosen so that 2G/3π = 1
(to agree with those of Ref. [9]).

The corresponding ensemble Hamiltonian for a quantized field interacting with the classical
metric is given by [9]

H̃φa =

∫
dadφP

[
Hφa +

h̄2

4

1

a3

(
∂ log P

∂φ

)2
]
. (13)

Assuming the constraints ∂S
∂t = ∂P

∂t = 0, the equations of motion take the form

Hφa −
h̄2

a3
1√
P

∂2
√
P

∂φ2
= 0 (14)

and

− ∂

∂a

(
P

a

∂S

∂a

)
+

∂

∂φ

(
P

a3
∂S

∂φ

)
= 0. (15)

An exact solution can be derived for the case S = 0. This is a highly non-classical solution:
Eq. (12), the classical Hamilton-Jacobi equation, does not admit any solutions with this ansatz.
When S = 0, Eq. (14) reduces to

− h̄
2

a3
1√
P

∂2
√
P

∂φ2
− a+

λa3

3
+ a3m2φ2 = 0 (16)

while Eq. (15) is automatically satisfied. The non-negative, normalizable solutions take the form

Pn (φ, a) = δ (a− an)
αn√
π2nn!

exp
(
−α2

nφ
2
)
[Hn (αnφ)]

2 (17)

where the Hn are Hermite polynomials, α2
n = a3nm/h̄ and the an satisfy the condition

an − λa3n
3

= 2h̄m

(
n+

1

2

)
(18)

for n = {0, 1, 2, ...}. If the term proportional to the cosmological constant λ can be neglected,

the quantization condition takes the simple form an = 2h̄m
(
n+ 1

2

)
.
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While the transformation ψ =
√
P leads, via Eq. (16), to a Schrödinger equation for ψ, it is

not possible to introduce solutions that are linear superpositions of the ψn because the potential
term in the equation ends up being a function of an.

This solution that has been derived in this section has some remarkable features. One can
see that the coupling of the quantum field to a purely classical metric leads to a quantization
condition for the scale factor a. Furthermore, the classical singularity at a = 0 is excluded
from these solutions. Finally, notice that there is a natural ordering of the solutions {Pn} in
terms of n and one may argue that this ordering leads to a thermodynamic arrow of time. This
follows from the observation that the amount of structure associated with a solution Pn (as
determined, for example, by counting the number of nodes in ψn or by evaluating the entropy
expression −

∫
dφPn log Pn for different values of n) increases with increasing n. Note that this

thermodynamic arrow of time coincides with the arrow of time as determined by an expanding
universe whenever the non-linear term proportional to λ can be neglected.

4. Hybrid cosmological model in spherically symmetric gravity

Consider now a midisuperspace hybrid cosmological model in spherically symmetric gravity. In
the case of spherical symmetry, the line element may be written in the form

gµνdx
µdxν = −N2dt2 + Λ2 (dr +N rdt)2 +R2dΩ2. (19)

The lapse function N and the shift function N r are functions of the radial coordinate r and the
time coordinate t. The configuration space for the gravitational field consists of two fields, R
and Λ. Under transformations of r, R behaves as a scalar and Λ as a scalar density. Spherically
symmetric gravity is discussed in detail in a number of papers, mostly in reference to the
canonical quantization of black hole spacetimes. For discussions using the metric representation,
see for example [19, 20, 21]. For discussions of the Einstein-Hamilton-Jacobi equation in the
context of the WKB approximation of quantized spherically symmetric gravity, see for example
[22, 23].

I now set h̄ = c = G = 1. The Einstein-Hamilton-Jacobi equation for the case of a vacuum
gravity takes the form

HΛR = − 1

R

δS

δR

δS

δΛ
+

1Λ

2R2

(
δS

δΛ

)2

+ λ
ΛR2

2
+ V = 0 (20)

where S is assumed to be invariant under diffeomorphisms. V is related to the curvature scalar
by 4R = −4ΛR2 V , and is given by

V =
RR′′

Λ
− RR′Λ′

Λ2
+
R′2

2Λ
− Λ

2
(21)

where primes indicate derivatives with respect to r.
The ensemble Hamiltonian of a hybrid system where the matter is in the form of a minimally

coupled quantized radially symmetric scalar field of mass m is given by

H̃φΛR =

∫
dr

∫
DhP N [HφΛR + Fφ] , (22)

where

HφΛR = HΛR +
1

2ΛR2

(
δS

δφ

)2

+
R2

2Λ
φ′2 +

ΛR2m2

2
φ2, (23)

and

Fφ =
1

8ΛR2

(
δ log P

δφ

)2

. (24)
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Eq. (22) is the analogous of Eq. (7) for the case of spherically symmetric gravity. Assuming
again the constraints ∂S

∂t = ∂P
∂t = 0, the corresponding equations are

∫
dr N

[
HφΛR − 1

2ΛR2

(
1

A

δ2A

δφ2

)]
= 0, (25)

where A ≡ P 1/2, and the continuity equation

∫
dr N

[
δ

δR

(
P

1

R

δS

δΛ

)
+

δ

δΛ

(
P

1

R

δS

δR
− P

Λ

R2

δS

δΛ

)
− δ

δφ

(
P

1

ΛR2

δS

δφ

)]
= 0. (26)

I now want to consider a class of solutions that is analogous to the class of minisuperspace
solutions described in the previous section. To do this, I will look for a solution that satisfies
the following requirements:

(i) it corresponds to choosing a foliation of spaces of constant positive curvature and a lapse
function N that is constant, and

(ii) it satisfies S = 0.

In this case, Eqs. (25) and (26) reduce to a single Schrödinger functional equation for A; i.e., of
the type

− 1

2ΛR2

(
δ2A

δφ2

)
+

[
λ
ΛR2

2
+ V +

R2

2Λ
φ′2 +

ΛR2m2

2
φ2
]
A = 0. (27)

This equation can be solved using standard techniques developed for the Schrödinger functional
representation of quantum field theory [18, 24, 25, 26].

To get an explicit solution that corresponds to the lowest state of the minisuperspace model
that I considered in the previous section, I will assume that A has the form of a ground state
Gaussian functional; i.e.,

A(0) ∼ exp

{
−1

2

∫ ∫
dy dzΛy Λz R

2
y R

2
z φyKyz φz

}
. (28)

Instead of A(0), one may also consider the excited states which solve the functional Schrödinger
equation; I discuss the consequences of making this alternative choice at the end of this section.

As shown in Appendix C, the equation that determines the functional A(0) can be mapped
to a functional Schrödinger equation in a space of constant curvature and the kernel Kxy can
be expressed in the simple form

Kxy =
1

2a40

∑

n

√
γn ψ

(n)
x ψ(n)

y , (29)

where the ψ
(n)
r are solutions of a Schrödinger-type equation in a space of constant curvature,

− 1

sin2 r

∂

∂r

(
sin2 r

∂ψ
(n)
r

∂r

)
+m2a20 ψ

(n)
r = γnψ

(n)
r . (30)

The eigenvalues γn are given by

γn = n2 − 1 +m2a20, n = 1, 2, 3... . (31)
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As described in Appendix C, in principle it is possible to get an expression for a0 that depends
on the cosmological constant λ and the energy E(0) of the quantized scalar field, which is given
by [26]

E(0) ∼ a30

∫
dr sin2 r Krr. (32)

However,
∫
dr sin2 r Krr ∼ ∑

n γn, which diverges. This is a consequence of the infinite zero-
point energy of the quantum field. It is necessary to use a renormalization procedure to extract
a finite result.

In this particular case, the equation for A(0) is similar in form to a functional Schrödinger
equation for a quantum scalar field in an Einstein universe, so it is possible to use previous results
from the literature where such renormalization procedures have been carried out (for a thorough
analysis, see reference [27]). Note that this is not the generic case: since the equations of hybrid
cosmology are not linear, in general they will not map to a Schrödinger-type functional equation.
The simplification that is achieved here is a direct consequence of choosing S = 0. With a
different ansatz, the equations can not be solved in this way. A discussion of renormalization
procedures for this solution is outside of the scope of this paper and will be the subject of a
future publication.

A similar analysis may be carried out where the ground state functional A(0) is replaced by

an excited state. Consider a first excited state A(1) specified by the eigenfunction ψ
(n)
r . This

state will differ in energy from the (divergent) ground state energy by a finite amount ∆E(n)
which depends on the value of γn, with ∆E(n) =

√
γn [26]. ∆E(n) can only take discrete

values because γn is quantized, and this means that a0 will also be restricted to discrete values.
Therefore, the coupling of the quantum scalar field and classical gravitational field leads to the
quantization of the radius of the universe, not only for the minisuperspace model but also for
the midisuperspace model.

5. Concluding remarks

The main result of this paper is a formulation of hybrid cosmological models that makes use
of the formalism of ensembles on configuration space and thus provides an alternative to other
approaches (e.g., semiclassical gravity) which couple quantum matter to classical gravitational
fields. In particular, I have examined the case in which a classical gravitational field interacts
with a quantized massive scalar field. I have derived a particular, highly nonclassical solution
using two approximations, minisuperspace and spherically-symmetric midisuperspace.

The hybrid cosmological model examined here was previously considered in reference [9]
but only within the minisuperspace approximation. One of the aims of the present work
was to reexamine this model using the next level of approximation; i.e., in the context of a
midisuperspace formulation like spherically symmetric gravity. It appears that the space of
solutions in midisuperspace may be very rich by comparison. This is a consequence of the
renormalization procedure that needs to be carried out to achieve a finite result. This complexity
is absent from the minisuperspace solution.

In both minisuperspace and midisuperspace, the coupling of the quantum scalar field to the
classical gravitational field leads to the quantization of the radius of the universe, a remarkable
result. It would be interesting to know whether this is a generic feature of hybrid closed
cosmological models or whether this is a feature that is particular to the family of solutions
considered here (i.e., those with S = 0). In the minisuperspace solution, it is clear that a
singular solution with a = 0 is excluded; the situation is more complicated in the case of the
midisuperspace solution due to the need to introduce renormalization.

In the Einstein universe of classical relativity, the cosmological constant acts as a repulsive
force which balances the gravitational attraction of matter; it is essential to include it in order to
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achieve a static solution. In the hybrid solutions considered here, it is possible to achieve static
solutions with a vanishing cosmological constant and it would appear that quantum fluctuations
are sufficient to balance the gravitational attraction. It would be interesting to extend these
results to consider perturbative solutions without the restriction S = 0, which should describe
solutions that are not static.
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Appendix A. Ensembles on configuration space

This appendix provides a brief summary of the formalism of ensembles on configuration space.
Derivations of the results stated in this appendix can be found in Refs. [9, 11, 10].

Appendix A.1. Ensembles on configuration space describing classical, quantum and mixed
classical-quantum systems
Start with the assumption that, as seems to be implied by quantum mechanics, the configuration
of a physical system is an inherently statistical concept. The system is therefore described by
an ensemble of configurations with probability density P , where P ≥ 0 and

∫
dxP (x, t) = 1. To

derive equations of motion, introduce an ensemble Hamiltonian H̃[P, S], where S is an auxiliary
field that is canonically conjugate to P . The equations of motion take the form

∂P

∂t
=
{
P, H̃

}
PB

=
δH̃

δS
,

∂S

∂t
=
{
S, H̃

}
PB

= −δH̃
δP

, (A.1)

where {A,B}PB is the Poisson bracket of the fields A and B.
The following ensemble Hamiltonians lead to equations that describe the evolution of quantum

and classical non-relativistic systems,

H̃C [P, S] =

∫
dxP

[
|∇S|2
2m

+ V (x)

]
,

H̃Q[P, S] = H̃C [P, S] +
h̄2

4

∫
dx P

|∇ log P |2
2m

. (A.2)

For example, the equations of motion derived from H̃Q[P, S] are given by

∂P

∂t
+∇.

(
P
∇S
m

)
= 0,

∂S

∂t
+

|∇S|2
2m

+ V +
h̄2

2m

∇2P 1/2

P 1/2
= 0 (A.3)

while the equations of motion derived from H̃C [P, S] are the same as Eq. (A.3) but with h̄ = 0.
The first equation in Eq. (A.3) is a continuity equation, the second equation is the classical
Hamilton-Jacobi equation when h̄ = 0 and a modified Hamilton-Jacobi equation when h̄ 6= 0.
Defining ψ =

√
P eiS/h̄, Eq. (A.3) takes the form

ih̄
∂ψ

∂t
=

−h̄2
2m

∇2ψ + V ψ, (A.4)

which is the usual form of the Schrödinger equation. Therefore, in this formalism, quantum and
classical particles are treated on an equal footing, with differences being primarily due to the
different forms of the respective ensemble Hamiltonians.
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It is possible to extend the formalism in a natural way to allow for mixed quantum-classical
systems. A mixed quantum-classical ensemble Hamiltonian on a configuration space with
coordinates q, y is given by

H̃QC [P, S] =

∫
dq dy P

[
|∇yS|2
2M

+
|∇qS|2
2m

]

+

∫
dq dy P

[
h̄2

4

|∇q logP |2
2m

+ V (q, y, t)

]
. (A.5)

Here q denotes the configuration space coordinate of a quantum particle of mass m and y that
of a classical particle of mass M , and V (q, y, t) is a potential energy function describing the
quantum-classical interaction. The equations of motion for P and S derived from H̃QC are

∂P

∂t
= −∇q.

(
P
∇qS

m

)
−∇y.

(
P
∇yS

M

)
,

∂S

∂t
= −|∇qS|2

2m
− |∇yS|2

2M
− V +

h̄2

2m

∇2
qP

1/2

P 1/2
. (A.6)

The state of a system is described by specifying the two fields P and S. While the
interpretation of P is straightforward, there are some subtle issues concerning the physical
interpretation of S. For the cases discussed here (i.e., classical, quantum and mixed systems), it
is possible to define local energy and momentum densities in terms of S. If H̃[λP, S] = λH̃[P, S]
(which holds for the ensemble Hamiltonians that we considered above), then

H̃ =

∫
dxP

δH̃

δP
= −

∫
dxP

∂S

∂t
= −〈∂S/∂t〉, (A.7)

which shows that −P∂S/∂t is a local energy density. Furthermore,
∫
dxP∇S is the canonical

infinitesimal generator of translations, since

δP (x) = δx ·
{
P,

∫
dxP∇S

}

PB
= −δx · ∇P,

δS(x) = δx ·
{
S,

∫
dxP∇S

}

PB
= −δx · ∇S, (A.8)

under action of the generator, and therefore P∇S can be considered a local momentum density.
To maintain full generality, S should not be regarded as a “momentum potential”. In particular,
for an ensemble of classical particles with uncertainty described by the probability P , it will
not be assumed that the momentum of a member of the ensemble is a well-defined quantity
proportional to the gradient of S, as it is done in the usual deterministic interpretation of the
Hamilton–Jacobi equation. This avoids forcing a similar deterministic interpretation in the
quantum and quantum-classical cases. A deterministic picture can be recovered for classical
ensembles precisely in those cases in which trajectories are operationally defined.

Appendix A.2. Observables and local densities
Observables are functionals of P and S. Given two functionals A[P, S] and B[P, S], define their
Poisson bracket in the standard way,

{A,B}PB =

∫
dx

(
δA

δP

δB

δS
− δA

δS

δB

δP

)
, (A.9)
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which gives an algebra of obervables.
Arbitrary functionals A[P, S] are not necessarily observables because observables have to

satisfy certain mild requirements. For example, the infinitesimal canonical transformation
generated by any observable A must preserve the normalization and positivity of P . This
implies the two conditions

A[P, S + c] = A[P, S], δA/δS = 0 if P (x) = 0. (A.10)

Note that the first equation implies gauge invariance of the theory under S → S + c.
A more general condition that may be imposed on observables is that they be homogenous

of degree one in P ; i.e., A[λP, S] = λA[P, S]. This is a condition that is satisfied by both
classical and quantum systems, and it will be assumed here that it is also valid for mixed
classical-quantum systems. Then, it follows that

A[P, S] =

∫
dxP (δA/δP ) = 〈δA/δP 〉. (A.11)

That is, one can associate with each observable A a local density on the configuration space,
and the value of A can be calculated by integrating over this local density.

As a simple example, consider position and momentum observables. In all three cases
(classical, quantum, and mixed classical-quantum), they are given by X[P, S] =

∫
dxPx and

Π[P, S] =
∫
dxP∇S, with corresponding local densities Px and P∇S. Such an equivalence

does not hold of course for more complicated observables. For example, different functionals
are needed to describe the kinetic energy of classical, quantum, and mixed classical-quantum
systems, as is apparent from their corresponding ensemble Hamiltonians.

Appendix A.3. An example of a mixed classical/quantum system: Measurement of the position
of a quantum particle carried out by a classical apparatus
To illustrate the application of the formalism, I consider a simple model: a classical apparatus
which measures the position of a quantum particle [9].

To model a measurement of position, introduce the ensemble Hamiltonian

H̃position = H̃QC + κ(t)

∫
dq dxP q.∇xS. (A.12)

For an interaction over a short time period [0, T ] such that H̃QC can be ignored during the
interaction,

∂P

∂t
= −κ(t) q.∇xP,

∂S

∂t
= −κ(t) q.∇xS, (A.13)

which integrates to (K =
∫ T
0 dt κ(t))

P (q, x, T ) = P (q, x−Kq, 0), S(q, x, T ) = S(q, x−Kq, 0). (A.14)

Consider the case where the initial position of the pointer is sharply defined, P (q, x, 0) =
δ(x − x0)PQ(q). Then, after the measurement, ∆x 6= 0, with probability PQ(q) of finding
x = x0 − Kq. In other words, uncertainty is transferred from the quantum ensemble to the
classical ensemble. Transfer of uncertainty is the norm whenever two systems interact.

To interpret the outcome it will be helpful to introduce some additional concepts. Consider
the conditional probability P (q|x) = P (q, x)/P (x). The conditional wave function is defined by

ψ(q|x) =
√
P (q|x) eiS(q,x)/h̄, |ψx〉 =

∫
dq ψ(q|x) |q〉. (A.15)
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Introduce a conditional density operator,

ρQ|C =

∫
dxP (x) |ψx〉〈ψx|. (A.16)

It is important to keep in mind that ψ(q|x) and ρQ|C do not satisfy linear Schrödinger and
Liouville equations, nor unitary invariance properties. These quantities only contain partial
information.

The conditional density for the quantum component is diagonal in the position basis,

ρQ|C =

∫
dq PQ(q) |q〉〈q| (A.17)

and thus “decoheres” with respect to position.
The main features of this simple measurement model are: (i) the measuring apparatus is

described classically; (ii) information about quantum ensembles is obtained via an appropriate
interaction with an ensemble of classical measuring apparatuses, which correlates the classical
configuration with a corresponding quantum property, and (iii) there is a conditional decoherence
of the quantum ensemble relative to the classical ensemble, which depends upon the nature of
the quantum-classical interaction.

Appendix A.4. Entanglement
Entangled states in quantum mechanics are those states of a multi-particle state that can not
be expressed as a product of single-particle states. A non-entangled state is therefore one that
has a wave function ψ that can be written in the form

ψ(t, x1, x2, ..., xn) =
n∏

k=1

ψk(t, xk) (A.18)

where the ψk are single-particle wave functions. In other words, a non-entangled state is one in
which P and S satisfy the conditions

P (t, x1, x2, ..., xn) =
n∏

k=1

Pk(t, xk),

S(t, x1, x2, ..., xn) =
n∑

k=1

Sk(t, xk) (A.19)

There is no difficulty in extending this distinction between entangled and non-entagled states
to physical states described in the ECS formalism; in particular, classical and mixed classical-
quantum states can be entangled since they need not satisfy the requirements of Eq. (A.19).
Therefore, entanglement in this sense is a general feature of ensembles in configuration space
and it is not restricted to quantum mechanical systems only.

Appendix B. Classical ensembles of gravitational fields

A Hamilton-Jacobi formulation for the gravitational field can be defined in terms of the
functional equations

H = κGijkl
δS

δhij

δS

δhkl
− 1

κ

√
h (R− 2λ) = 0,

Hi = Dj

(
hik

δS

δhkj

)
= 0, (B.1)
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where R is the curvature scalar and hkl the metric tensor on a three-dimensional spatial
hypersurface, λ is the cosmological constant, κ = 16πG (in units where c = 1 and G

is the gravitational constant), and Gijkl = (2h)−1/2 (hikhjl + hilhjk − hijhkl) is the DeWitt
supermetric [15].

As a consequence of the Hamiltonian constraintH = 0 and the momentum constraintsHi = 0,
S must satisfy an infinite set of constraints, numbering four per three-dimensional point. S also
satisfies the condition ∂S

∂t = 0 [28]. The momentum constraints are equivalent to requiring the
invariance of the Hamilton-Jacobi functional S under spatial coordinate transformations. One
may therefore formulate the theory in an equivalent way by keeping the Hamiltonian constraint,
ignoring the momentum constraints, and requiring instead that S be invariant under the gauge
group of spatial coordinate transformations.

To define classical ensembles for gravitational fields, it is necessary to introduce some
additional mathematical structure: a measure Dh over the space of metrics hkl and a probability
functional P [hkl]. A standard way of defining the measure [29, 30] is to introduce an invariant
norm for metric fluctuations that depends on a parameter ω,

‖δh‖2 =
∫
dnx [h (x)]ω/2H ijkl [h(x);ω] δhijδhkl (B.2)

where n is the number of dimensions and

H ijkl =
1

2
[h (x)](1−ω)/2

[
hikhjl + hilhjk + λhijhkl

]
(B.3)

is a generalization of the inverse of the DeWitt supermetric (in [29] the particular case ω = 0
was considered). This norm induces a local measure for the functional integration given by

∫
dµ [h] =

∫ ∏

x

[detH (h (x))]1/2
∏

i≥j

dhij (x) (B.4)

where

detH (h (x)) ∝
(
1 +

1

2
λn

)
[h (x)]σ , (B.5)

and σ = (n+ 1) [(1− ω)n− 4] /4 (one needs to impose the condition λ 6= −2/n, otherwise the
measure vanishes). Therefore, up to an irrelevant multiplicative constant, the measure takes the
form ∫

dµ [h] =

∫ ∏

x

[√
h (x)

]σ∏

i≥j

dhij (x) . (B.6)

Without loss of generality, one may set Dh equal to dµ [h] with σ = 0, since a term of the form[√
h (x)

]σ
may be absorbed into the definition of P [hkl].

It is natural to require also that
∫
DhP be invariant under the gauge group of spatial

coordinate transformations. Since the family of measures defined by eq. (B.6) is invariant
under spatial coordinate transformations [30, 31], the invariance of

∫
DhP leads to a condition

on P that is similar to the one required of S. To show this, consider an infinitesimal
change of coordinates x′k = xk + ǫk (x) and the corresponding transformation of the metric,
hkl → hkl − (Dkǫl +Dlǫk). The variation of

∫
DhP can be expressed as

δǫ

∫
DhP =

∫
Dh

[
Dk

(
δP

δhkl

)
ǫl +Dl

(
δP

δhkl

)
ǫk

]
. (B.7)

Therefore, δǫ
∫
DhP = 0 requires

Dk

(
δP

δhkl

)
= 0. (B.8)
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or the gauge invariance of P . In addition to eq. (B.8), it will be assumed that ∂P
∂t = 0 also

holds.
Finally, it should be pointed out that one must factor out the infinite diffeomorphism

gauge group volume out of the measure to calculate finite averages using the measure Dh
and probability functional P . This can be achieved using the geometric approach described in
[32]. This issue will not be discussed further here, since it does not affect the derivation of the
equations of motion.

An appropriate ensemble Hamiltonian for the gravitational field is given by

H̃c =
∑

x

∫
DhPH ∼

∫
d3x

∫
DhPH. (B.9)

The equations of motion derived from eq. (B.9) are of the form

∂P

∂t
=

∆H̃c

∆S
,

∂S

∂t
= −∆H̃c

∆P
(B.10)

where ∆/∆F denotes the variational derivative with respect to the functional F . With ∂S
∂t =

∂P
∂t = 0, the equations of motion take the form

H = 0, (B.11)

and ∫
d3x

δ

δhij

(
PGijkl

δS

δhkl

)
= 0. (B.12)

Eq. (B.11) is the Hamiltonian constraint, and eq. (B.12) may be interpreted as a continuity
equation.

It is of interest that the interpretation of eq. (B.12) as a continuity equation leads to a rate

equation that relates ∂hkl

∂t and δS
δhkl

. This follows from the observation that such an interpretation

is only possible if the “field velocity” ∂hkl

∂t is related to Gijkl
δS
δhkl

in a linear fashion. Indeed, the
most general rate equation for the metric hij that is consistent with the interpretation of eq.
(B.12) as a continuity equation is of the form

δhij =

(
αGijkl

δS

δhkl
+ δǫhij

)
δt (B.13)

where α is an arbitrary function of x (I have include a term δǫhkl = − (Dkǫl +Dlǫk) which
allows for gauge transformations of hkl, which is permitted because the gauge transformations
are assumed to leave

∫
DhP invariant, as discussed before). Therefore, one may write the rate

equation for hkl in the standard form

∂hij
∂t

= NGijkl
δS

δhkl
+DiNj +DjNi. (B.14)

Eq. (B.14) agrees with the equations derived from the ADM canonical formalism, provided N
is identified with the lapse function and Nk with the shift vector [33].

It is remarkable that the rate equations for the metric, eq. (B.14), can be shown to be a
direct consequence of applying the theory of ensembles on configuration space to classical general
relativity. By contrast, the derivation of the rate equations from the Hamilton-Jacobi formalism
alone [34] requires a much more lengthy derivation.
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Appendix C. Ground state Gaussian functional solution

Consider the Schrödinger functional equation

− 1

2ΛR2

(
δ2A

δφ2

)
+

[
λ
ΛR2

2
+ V +

R2

2Λ
φ′2 +

ΛR2m2

2
φ2
]
A = 0. (C.1)

with the ansatz

A ∼ exp

{
−1

2

∫ ∫
dy dz Λy Λz R

2
y R

2
z φyKyz φz

}
. (C.2)

If I calculate δ2A
δφ2 and collect terms that have the same powers of φ, I get the following two

equations for the kernel Kxy,

∫
dr N

[
λ
ΛR2

2
+ V (R,Λ) +

ΛrR
2
r

2
Krr

]
= 0 (C.3)

and ∫
drΛrR

2
r N

[
φ′2r
2Λ2

r

+
m2

2
φ2r −

1

2

∫ ∫
dydz ΛyR

2
yΛzR

2
z φyKyrKrzφz

]
= 0. (C.4)

After an integration by parts in Eq. (C.4), the equations for Kxy are of a type that is standard
in the context of the Schrödinger functional representation of quantum field theory in curved
spacetimes [18, 24, 25, 26].

I want a solution that is valid for a foliation of spaces of constant positive curvature and
a lapse function N that is constant. Note that the Λ and R that appear in the line element
of Eq. (19) satisfy

√
h = ΛR2 and hrr = Λ−2, where hkl is the inverse metric tensor on the

three-dimensional spatial hypersurface of constant curvature. Then, Eq. (C.4) can be written
in the form

∫
dr
√
hr

[
1

2
hrr

∂φr
∂r

∂φr
∂r

+
m2

2
φ2r −

1

2

∫ ∫
dydz

√
hy
√
hz φyKyrKrzφz

]
= 0, (C.5)

and one can show that Kxy satisfies

∫
dr
√
hrKyrKrz =

[
− 1√

hy

∂

∂y

(
hyy
√
hy

∂

∂y

)
+m2

]
δ(y, z) (C.6)

where δ(y, z) = 1√
hy

δ(y − z) is the delta function on the hypersurface.

To get an explicit expression for Kxy that solves Eq. (C.6), introduce a fixed, particular set
of coordinates for the line element of Eq. (19). Let

N = 1, N r = 0, Λ = a0, R = a0 sin r, (C.7)

where r ∈ [0, 2π) and a0 can be interpreted as the scale factor of a closed Robertson-Walker
universe. Then the solution of Eq. (C.6) is given by

Kxy =
1

2a40

∑

n

√
γn ψ

(n)
x ψ(n)

y , (C.8)

where the basis functions ψ
(n)
r are solutions of a Schrödinger-type equation in a space of constant

curvature,

− 1

sin2 r

∂

∂r

(
sin2 r

∂ψ
(n)
r

∂r

)
+m2a20 ψ

(n)
r = γnψ

(n)
r . (C.9)
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The ψn(r) satisfy orthonormality and completeness relations. The eigenvalues γn are given by

γn = n2 − 1 +m2a20, n = 1, 2, 3... . (C.10)

Given the solution of Eq. (C.4), one can use Eq. (C.3) to express a0 in terms of the
cosmological constant and the energy E of the quantized scalar field, since [26]

E ∼ a30

∫
dr sin2 rKrr. (C.11)

However,
∫
dr sin2 r Krr ∼ ∑

n γn, which diverges. This is a consequence of the infinite zero-
point energy of the quantum field. Therefore, to extract a finite result for a0 it becomes necessary
to introduce renormalization procedures.
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