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Abstract. Magnetic field extrapolation is the construction of a model solution for the coronal
magnetic field in active regions from magnetic boundary data originating close to the Sun’s
surface. The nonlinear force-free model (in which the electric current density is parallel
to the magnetic field) is often adopted to describe the coronal field. The solution of the
nonlinear force-free equations is a challenging computational task, and the application of codes
to available boundary data has revealed a number of significant problems with nonlinear force-
free extrapolation. This paper summarises the present status of coronal field extrapolation, and
describes some recent developments.

1. Background

The structure glimpsed in the solar corona during a total eclipse (see Figure 1) is determined
by magnetic fields at the Sun’s surface. The energy associated with strong fields around
sunspots drives large-scale solar activity, namely flares and coronal mass ejections, which produce
space weather storms in our local space environment, posing risks to critical communications
infrastructure [1].

Solar activity and space weather motivate the modeling of active region magnetic fields.
Ideally we would like to use modeling to address fundamental questions concerning the magnetic
energy release process underlying solar activity, as well as to improve the accuracy of space
weather forecasts.

1.1. Vector magnetogram data

Vector magnetogram data provide a basis for active region magnetic field modeling. The data
are derived from determinations of Stokes polarisation profiles for magnetically sensitive lines
formed close to the photosphere [2], for fields of view encompassing active regions. Magnetic
field values are obtained from the Stokes profiles via “Stokes inversion,” a process involving
modeling radiative transport of polarised radiation through the magnetised solar atmosphere.
It is important to recognise that field values obtained in this way are inferences, not direct
measurements or observations, and as such are subject to substantial a priori uncertainty. The
field values are highly method- and model-dependent. Additionally, the intrinsic 180◦ ambiguity
in the direction of the component of the field perpendicular to the line of sight must be resolved
to obtain unique magnetic field values [3, 4, 5].
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Figure 1. The Sun at totality during the eclipse of 14 November 2012, photographed from
Palm Cove beach by the author.

The resulting vector magnetogram data consist of a photospheric map of magnetic field values
B = (Bx, By, Bz) over a region at the photosphere, where x, y, and z are local heliocentric
coordinates, with z denoting the local radial direction. It is common to neglect the curvature of
the photosphere for data on an active region scale, and to refer to z as the vertical direction.

Two space-based vector magnetographs – the Solar Optical Telescope/Spectro-Polarimeter
(SOT/SP) on the Hinode satellite [7], and the Helioseismic & Magnetic Imager on the Solar
Dynamics Observatory (SDO/HMI) – are now providing data with unprecedented quality,
resolution, and cadence [8].

In principle, the data provide boundary conditions for coronal field modeling. Assuming the
field is static, a specific coronal field model may be solved as a boundary value problem, a process
often called “coronal field reconstruction.” The vertical current density Jz at the photosphere
provides an important boundary value for coronal field models, which determines the magnetic
energy of a solution to the model (the minimum energy magnetostatic field with a prescribed
normal component of the field in the boundary is the potential or current-free field, for which
Jz = 0 in the boundary [6]). The vertical electric current density at the photosphere may be
estimated from vector magnetogram data using

µ0Jz|z=0 =

[

∂By

∂x
−

∂Bx

∂y

]

z=0

. (1)

1.2. The nonlinear force-free model

The coronal magnetic field is often modeled as a nonlinear force-free field [9], described by

J× B = 0 and ∇ ·B = 0. (2)

The model describes a static coronal field in which the electric current density J = µ−1
0 ∇× B

is everywhere parallel to B. Equations (2) may be rewritten in the form

Eclipse on the Coral Sea: Cycle 24 Ascending (GONG 2012, LWS/SDO-5, and SOHO 27) IOP Publishing
Journal of Physics: Conference Series 440 (2013) 012037 doi:10.1088/1742-6596/440/1/012037

2



B · ∇α = 0 and ∇× B = αB (3)

by introducing the force-free parameter α, defined by J = αB/µ0. Physically α represents the
constant ratio of the electric current density to the magnetic field along a field line. Equations (3)
are a coupled system of four nonlinear PDEs for the four dependent variables (Bx, By, Bz, and
α), which may be solved subject to suitable boundary conditions.

The boundary value problem in a half space (z > 0) requires specification of the normal
component of the field Bz over the boundary z = 0, together with the specification of α over
one polarity of the field in the boundary (i.e. the values of α must be given over z = 0 where
Bz > 0, or the values of α must be given over z = 0 where Bz < 0) [10]. It is necessary only to
specify α over one polarity because α is a constant along field lines (B · ∇α = 0), so values at
one polarity are “mapped” to the other polarity by the field lines of the solution. We refer to
the polarities defined by Bz > 0 and Bz < 0 as P and N respectively.

A variety of methods of solution of Equations (3) have been developed [9]. All methods
are iterative, and work by solving a system of linear equations, such that an iterative sequence
of solutions converges to a solution to the nonlinear Equations (3). Popular methods include
Grad-Rubin iteration [10, 11], optimization [12, 13], and the magnetofrictional method [14, 15].

Some force-free methods (e.g. optimization) use the vector field values B = (Bx, By, Bz)
at z = 0 over both polarities (P and N) as boundary conditions. This is formally an over-
prescription, but should lead to no error provided the boundary conditions are consistent with
a solution to the force-free model.

The Grad-Rubin scheme requires solution, at at iteration k, of the linear system

B[k−1] · ∇α[k] = 0 and ∇× B[k] = α[k]B[k−1]. (4)

The boundary conditions are imposed on B
[k]
z at z = 0, and on α[k] at z = 0 over either P or N ,

as explained above. The iteration sequence is typically started with a potential (current-free)
field for B[0]. A fixed point of the iteration scheme defined by Equations (4) is clearly a solution
to the nonlinear force-free equations.

2. The inconsistency problem

2.1. The problem

A sequence of yearly workshops was organised by Lockheed Martin for the years 2005 to 2009,
directed at improving the state of nonlinear force-free modeling. The workshops revealed
that force-free methods work for test cases but fail, in specific ways, when applied to vector
magnetogram data [16, 18, 17, 19]. A basic problem is that the boundary data are inconsistent
with the model. Vector magnetogram data provide two sets of boundary conditions for the force-
free model, since values of α = µ0Jz/Bz may be determined for both the P and N polarities
over the magnetogram field of view. This admits the possibility of two different solutions (the P
and N solutions) to the model, depending on the choice of polarity for the boundary conditions.
The workshops showed that two distinctly different solutions were obtained, for the Hinode
SOT/SP vector magnetograms used in the studies. The field line configurations for the P and
N solutions were found to be significantly different, and moreover the magnetic energies of the
two solutions were substantially different [17, 19]. Vector magnetogram data typically fail to
meet necessary conditions for the existence of a force-free solution [20], which may be attributed
to non-magnetic forces at the photospheric level of the atmosphere. The solar atmosphere is
thought to become force-free ≈ 400 km above the photosphere [21].

Figure 2 illustrates the inconsistency problem. The left hand diagram shows field lines for a P
solution, and the right hand diagram shows field lines for an N solution, for boundary data which
are inconsistent with the force-free model. The field line configurations are distinctly different:
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α=  foot point at which      is chosen

NP NP

Figure 2. A schematic illustration of the inconsistency problem in nonlinear force-free modeling.
If the boundary data are inconsistent with the force-free model, the P and N solutions (left and
right diagrams, respectively) will be different. The field lines for the two solutions are shown by
the loops.

the P solution has tall, nearly current-free loops over the neutral line separating the polarities,
and the N solution has low current-carrying loops which are strongly sheared along the neutral
line. This situation may occur if the α values are systematically larger in the N polarity than
the P polarity. (Note that an extreme case of inconsistency is shown, for illustration. Actual
solar data are unlikely to show systematic discrepancies.)

We would like to estimate the free magnetic energy of the extrapolated solutions, i.e. the
energy Ef = E−E0, where E is the total magnetic energy, and E0 is the energy of the potential
field configuration with the same boundary conditions on Bz. However, in general the P and N
solutions obtained from extrapolating vector magnetogram data have different magnetic energies.
Typically Ef ≪ E0, so the free magnetic energy of the P and N solutions may differ by a large
factor, as illustrated by an example presented in Section 3.

This discussion applies to methods of solution of the model using values of α over one polarity
as boundary conditions. Some methods of solution of the nonlinear force-free model use values
of B over both P and N as BCs. In that case the inconsistency of the boundary data with the
model leads to “solutions” with J×B 6= 0 and/or ∇ ·B 6= 0 somewhere in the coronal volume.

2.2. Practical methods of resolution

The “preprocessing” procedure [22] provides one method of improving (but not resolving) the
inconsistency problem. The vector field components in the boundary are modified to meet
certain conditions necessary for the force-free model. However, the conditions imposed are not
sufficient to ensure a solution to the model, and in general preprocessed boundary data remain
inconsistent with the model. The procedure is found to improve results in some cases [19].

A solution consistent with the model is obtained by the “self-consistency procedure” [23, 24],
which works as follows. The vector magnetogram data are used to calculate P and N solutions.
The two solutions are then used to identify a single force-free solution which is in some sense
“closest” to the P and N solutions, and in particular has a very similar mapping of foot points
between polarities. The method treats the P and N solutions as equally valid, except that
uncertainties in boundary values of α are taken into account (preference is given to boundary
data with small uncertainties). The self-consistent solution has the same boundary conditions
on Bz as the vector magnetogram, but modified BCs on α.

To give a more detailed account, there are three steps in the self-consistency procedure. Step
1. is the calculation of the P and N solutions, from (unpreprocessed) vector magnetogram data.
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The Grad-Rubin scheme of Equation (4) is used [11]. Step 2. is an adjustment of the boundary
values, taking uncertainties in α values into account, as follows. Each solution defines a mapping
of α values from one polarity to the other, since α is a constant along field lines in a force-free
solution (the P solution maps boundary values of α from the P to the N polarity, and the N
solution maps boundary values of α from N to P ). The mappings define two complete sets of
boundary values of α, which we denote by αP and αN . (The αP data consist of the magnetogram
values over the P polarity, and mapped values over the N polarity, and the αN data consist of
the magnetogram values over the N polarity, and mapped values over the P polarity.) There are
also two complete sets of corresponding uncertainties, σP and σN , since the uncertainties map
also along field lines. Together there are two possible sets of boundary values and uncertainties:

αP ± σP and αN ± σN at z = 0. (5)

The two sets of values are regarded as two (imperfect) determinations of the true values. A
Bayesian estimate of the true values and associated uncertainties, assuming Gaussian-distributed
errors, is [23]:

αest =
αP /σ2

P + αN/σ2
N

1/σ2
P + 1/σ2

N

and σest =
1

√

1/σ2
P + 1/σ2

N

. (6)

The values αest will in general still be inconsistent with the force-free model, but they are
expected to be closer to consistency. Step 3. is the process of iteration. Steps 1. and 2.
are repeated, with the vector magnetogram-derived values of α replaced by the new estimates
αest ± σest. (The first step in the next iteration is the calculation of P and N solutions using
the magnetogram boundary values of Bz together with the new boundary values αest for the
force-free parameter.)

In practice the self-consistency procedure is found to arrive at a self-consistent solution within
about a dozen “cycles” of the three steps (the iterations of the steps are termed cycles to
distinguish them from the iterations of the Grad-Rubin procedure used to construct the P and
N solutions). A practical convergence criterion for the slef-consistency cycles is that the P and
N solution energies agree to . 1% for consecutive cycles.

Other approaches to the inconsistency problem have also been presented, in particular
an “optimization Grad-Rubin method” [25], and an optimization method incorporating
measurement errors [26].

3. A modeling example

To illustrate the application of the self-consistent modeling procedure, we consider the treatment
of active region 11029, a small but highly-flare productive region which emerged on the disk on
21-22 Oct 2009. The region produced 73 GOES events above B class during its transit of the
disk, briefly interrupting the extended minimum at the end of cycle 23. Because it flared in
relative isolation, active region 11029 provided a good subject for a study of the statistics of
flare occurrence in an individual active region [27]. The size distribution of soft X-ray events in
the region appeared to show a relative deficit of large events – a departure from the well known
power-law flare frequency-size distribution. In a follow-up study the region was modeled using
the self-consistency procedure, to attempt to determine the region’s free energy [28].

Figure 3 shows the data and the results of the nonlinear force-free modeling of the region.
The upper left panel illustrates the boundary conditions, which use Hinode SOT/SP vector field
determinations together with Solar and Heliospheric Observer/Michelson Doppler Interferometer
(SoHO/MDI) line-of-sight magnetic field data [29]. The upper sub-panel shows Bz and the lower
sub-panel shows Jz . Uncertainties are assigned to the data based on uncertainties from the Stokes
inversion procedure. The upper right panel in Figure 3 demonstrates the convergence of the self-
consistency procedure. The energy of the P and N solutions calculated at each self-consistency
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cycle is plotted versus the cycle number (the P energies are shown by plus signs and a dashed
line, and the N energies are shown by diamonds and a solid line) with the energy given in units
of the potential-field energy E0. Initially the P and N solutions have very different energies,
illustrating the inconsistency, but after 10 cycles the energies are very similar, as expected for a
self-consistent solution (i.e. one for which the P and N solutions match). The lower panel shows
the magnetic field configurations after 10 self-consistency cycles. The view looks down on the
computational domain. The boundary values of Bz are shown by the color image, with regions
in the P polarity colored blue, and regions in the N polarity colored red. The corresponding field
lines for the P and N solutions are shown by the blue and red curves respectively. There is a good
correspondence between the two solutions, demonstrating the achievement of a self-consistent
solution. (Some discrepancy is seen for longer field lines.)

The calculation was performed on a 440 × 300 × 200 grid with 20 Grad-Rubin iterations per
self-consistency cycle. The code is a parallel implementation for shared memory multi-processor
computers.

The modeling of active region 11029 allows estimation of the magnetic free energy from
the extrapolated solutions. The energy of the self-consistent solution illustrated in Figure 3 is
E/E0 = 1.04 (see the top right panel of Figure 3), i.e. the free magnetic energy is ≈ 4% higher
than the potential energy. In absolute terms the potential field energy is E0 = 1.7 × 1033 erg (a
relatively large value) and the free energy is Ef = E −E0 = 6× 1031 erg. Varying the details of
the modeling leads to slightly different self-consistent solutions, with slightly different energies.
Based on a sequence of self-consistent calculations the free energy is estimated to lie in the range
Ef = 6 × 1031 – 8 × 1031 erg [28]. This example shows that reliable estimation of the magnetic
free energy is difficult. Other recent detailed modeling studies confirm this [30].

A self-consistent solution is obtained for active region 11029, but it is unclear whether
the model solution provides a close match to the actual coronal magnetic field at the time
of the observations. The criteria for validating the modeling in this study are consistency and
robustness of the solutions. However, comparison with independent data is needed to confirm the
accuracy of the modeling. It is difficult to validate magnetic field extrapolation. Extrapolated
field lines may be compared, in projection, with coronal loops in short wavelength images of
the corona, but this test is qualitative. In some cases, the three-dimensional trajectories of
model field lines have been compared with stereoscopically determined coronal magnetic loop
trajectories [19]. It is fair to say that the validation of magnetic field extrapolation remains an
outstanding problem.

4. Recent developments

4.1. Extrapolation in spherical geometry

The Helioseismic and Magnetic Imager on the Solar Dynamics Observatory is providing full disk
vector magnetogram data [8]. In principle this allows extrapolation of coronal magnetic fields
from full disk data, for a given magnetic field model in spherical geometry.

Spherical force-free codes have been developed, for example a generalisation of the
optimization method [31, 32], and a new force-free electrodynamics method [33].

Here we provide a brief report on a new implementation of a Grad-Rubin solution to the
force-free equations in spherical geometry, which is similar in approach to the existing cartesian
code [11]. The method achieves an iterative solution of Equations (3) in spherical polar
coordinates, representing the field using a vector potential to ensure ∇ · B = 0. The current
updating step [the first of the first of Equations (3)] is achieved via field line tracing, and the
field updating step [the second of Equations (3)] uses a Fourier solution of the vector Poisson
equation for the vector potential. The boundary conditions are the specification of Br at the
solar surface r = R⊙, the specification of α over one polarity of the radial field at r = R⊙, and
the requirement that B → 0 as r → ∞.
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Figure 3. Self-consistent nonlinear force-free modeling of active region 11029 [28]. The upper
left panel (with two sub-panels) shows the boundary data, the upper right panel illustrates the
achievement of a self-consistent solution, and the lower panel shows the final magnetic field
configuration. (See Section 3 for details.)
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Figure 4. A test of a new full-Sun nonlinear force-free magnetic field calculation code, for a
localised current-carrying bipole field configuration (see text).

Figure 4 shows a test calculation using the new code, for a localised current-carrying bipole
field configuration. The radial field at the Sun’s surface is shown by the color on the sphere (blue
for a positive polarity radial field, and red for negative polarity). The boundary field consists of
two Gaussian spots at the points (R⊙, φ1, θ1) and (R⊙, φ2, θ2), where φ and θ denote the usual
azimuthal and polar angles in spherical polar coordinates. More precisely the radial magnetic
field over the model photosphere is

Br(θ, φ) = B0

(

e−s2

1
/σ2

− e−s2

2
/σ2

)

, (7)

where B0 is a normalisation constant, and where σ sets the widths of the spots. The variables
s1 = s1(θ, φ) and s2 = s2(θ, φ) are arc lengths along great circles, given by

s1 = R⊙ cos−1[sin φ1 sin φ + cos φ cos φ1 cos(θ − θ1)], (8)

and
s2 = R⊙ cos−1[sin φ2 sin φ + cos φ cos φ2 cos(θ − θ2)]. (9)

The boundary condition on electric current is α = α0 where Br > 0.9B0, and α = 0 otherwise,
which introduces current at the centre of the positive polarity bipolar spot. (The P solution
is calculated in this test case.) The white curves in Figure 4 show the field lines of the field
obtained after convergence of a sequence of Grad-Rubin iterations. A force-free twisted bipolar
structure is obtained.

4.2. New nonlinear force-free modeling workshops

As mentioned in Section 2, a series of nonlinear force-free modeling workshops was held
2005-2009, organised by Lockheed-Martin personnel, to test and compare extrapolation
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methods. The workshops have been relatively influential: the four publications from the
workshops [16, 18, 17, 19] have more than 400 citations, and techniques from the papers, e.g.
the use of metrics to compare vector field calculations, have become standard.

A new series of workshops will start in 2013, funded by an International Space Sciences
Institute (ISSI) International Teams in Space and Earth Sciences grant awarded in 2012 to Marc
De Rosa and Mike Wheatland (“Nonlinear Force-Free Modeling of the Solar Corona: Towards
a New Generation of Methods”). The workshops will permit testing of recent developments in
extrapolation, using Hinode and SDO/HMI data, and the results will be published in Space
Science Reviews. The first meeting is scheduled for late 2013.

5. Summary and conclusions

This paper presents an overview of the state of coronal magnetic field extrapolation. The
modeling is motivated by a need to understand solar activity, and the potential for improved
space weather prediction.

The data used are from vector magnetograms, which are determinations of all three
components of the photospheric magnetic field over areas on the Sun including active regions.
The model described here is the nonlinear force-free model.

The nonlinear force-free model is popular, but the application of the model to the data
presents a variety of challenges. In particular the solar data are inconsistent with the model,
leading to unreliable results, as highlighted in a series of nonlinear force-free workshops held
during 2005-2009.

Approaches to the inconsistency problem are here discussed, with a focus on the “self-
consistency procedure.” The method is illustrated in application to active region 11029,
a small but flare-productive region observed in late 2009. The modeling of active region
11029 emphasizes the difficulties of estimating the free magnetic energy based on extrapolated
solutions, and of validating the solutions.

Two recent developments are also discussed: a new spherical extrapolation method, suitable
for application to full-disk vector magnetic field data, and a new series of International Space
Science Institute (ISSI) workshops on nonlinear force-free modeling due to start in 2013.

There has been progress in recent years in coronal magnetic field extrapolation, but the state
of the art remains unsatisfactory. There are problems associated with the reliability of the
data, the ability of the codes to solve the model, the inconsistency of the available data with
the model, and we lack ways to confirm results. At this stage extrapolation techniques are not
standard packages ready to be included in data processing pipelines: caveat emptor! It is hoped
that additional work and new developments will produce reliable methods of extrapolation, for
general application.
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