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Abstract.
For an arbitrary electromagnetic field, we define a prepotential S, which is a complex-

valued function of spacetime. The prepotential is a modification of the two scalar potential
functions introduced by E. T. Whittaker. The prepotential is Lorentz covariant under a spin
half representation. For a moving charge and any observer, we obtain a complex dimensionless
scalar. The prepotential is a function of this dimensionless scalar. The prepotential S of an
arbitrary electromagnetic field is described as an integral over the charges generating the field.
The Faraday vector at each point may be derived from S by a convolution of the differential
operator with the alpha matrices of Dirac. Some explicit examples will be calculated. We also
present the Maxwell equations for the prepotential.

1. Introduction and motivation

In general, the electromagnetic field tensor F , expressed by a 4× 4 antisymmetric matrix, is
used to describe the electromagnetic field intensity. This description involves 6 parameters.
An alternative way to describe an electromagnetic field is by use of the 4-potential. In a
chosen gauge, the 4-potential transforms as a 4-vector. The electromagnetic field tensor is
then recovered by differentiating the 4-potential. Choice of a gauge can reduce the degrees of
freedom of this description to from 4 to 3.

In 1904 E. T. Whittaker introduced [24] two scalar potential functions. Thus, he was able
to reduce the degrees of freedom of the electromagnetic field description to 2. He showed
that the electromagnetic field can be expressed in terms of the second derivatives of these
functions. However, he was not able to find the covariance of his scalar potentials. H. S. Ruse
[21] improved the result of Whittaker. In 2009 Y. Friedman and S. Gwertzman showed [10] that
it is possible to combine these two scalar potential functions into one complex-valued function
S(x) on Minkowski space, which we call the prepotential of the electromagnetic field. Moreover,
they showed that this prepotential is invariant under a certain spin half representation of the
Lorentz group. Thus, this prepotential provides a covariant description of an electromagnetic
field with minimal degrees of freedom.

In 1953, influenced by M. Born, who was looking for the connection of the wave-function
description of elementary particles in quantum mechanics and the electromagnetic field
they generate, H. S. Green and E. Wolf introduced [15] a complex scalar potential for an
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electromagnetic field. They described the similarity of the expressions for energy and momentum
densities between their potential and the wave function. They were unable, however, to find the
connection between their potential and the Whittaker potentials.

An electromagnetic field is generated by a collection of moving charges. Thus, a description
of an electromagnetic field can be obtained by integrating the fields of moving charges. For a
moving charge and observer at point x, the position of the charge at the retarded time relative
to the observer is a null-vector in spacetime. We show that for each such vector, there is a
complex dimensionless scalar which is invariant under a certain representation of the Lorentz
group. The prepotential S(x) is defined to be the logarithm of this scalar.

The Aharonov-Bohm effect indicates that there is a multiple-valued prepotential of the
4-potential of an electromagnetic field. In their paper [2], a scalar function S such that
∇S = (eℏ/c)A, where A is the 4-potential of the electromagnetic field, was introduced. It
has been shown that if  0 is the solution of the Schrödinger equation in the absence of an
electromagnetic field, then the function  =  0e

−iS/ℏ is the solution of the equation in the
presence of the field, at least in a simply connected region in which the electromagnetic field
vanishes. In the magnetic Aharonov-Bohm experiment, however, the region outside the solenoid
is not simply connected. This leads to a multi-valued  in this experiment. As it was shown
in [11], our prepotential is of the same type, but is defined for any electromagnetic field. Our
prepotential is also multi-valued.

In classical mechanics, the negative of the gradient of a scalar potential equals the force. This
is true for forces which generate linear acceleration. Such forces are defined by a one-form (since
their line integral gives the work). The derivative of a scalar function is also a one-form. Hence,
the derivative of a potential can equal the negative of the force. But in classical mechanics we
also have rotating forces, which are described by two-forms. Such forces cannot be expressed as
derivatives of a scalar potential. For example, the electromagnetic field is not conservative in
general. It generates both linear and rotational acceleration, and the electromagnetic tensor is a
two-form. Hence, it is natural to assume that a kind of second derivative of a scalar potential will
define the force tensor. Note that the usual differential of a gradient of a real-valued function is
zero. Therefore, the prepotential must be complex-valued, and we will need to define a Lorentz
invariant conjugation of the gradient of the prepotential in order to obtain the 4-potential of the
field.

Another important property of a prepotential of an electromagnetic field is its locality. Note
that the electromagnetic tensor F�� of a field of a moving charge depends on the position,
velocity and acceleration, while the 4-potential A� depends only on the position and velocity of
the source. Our prepotential S depends only on the position of the source.

In section 2, we obtain a Lorentz group representation based on the complex electromagnetic
field tensor. We will show that the regular representation � of the Lorentz group can be
decomposed as a product of two commuting representations �̃ and �̃∗. In section 3, we will
introduce the prepotential of an electromagnetic field and show its geometric meaning. We
will also show the covariance of this prepotential under the action of the representation �̃. In
section 4, we will study the connection between the prepotential and the Faraday vector of a
field. We will find the gauge of the prepotential. Explicit solutions for the prepotential and
field of a charge at rest and a charged infinite rod will be found. Using computer algebra, we
will derive the field of an arbitrary moving charge from its prepotential. The Maxwell equations
for the prepotential will be derived in section 5 and we will demonstrate their use for deriving
the prepotential and the field of current in straight wire. In section 6, we will show that the
representation �̃ coincides with the spin half representation of the Lorentz group on the spinors.
We also show that the matrices occurring in the description of the connection of the prepotential
to the field are a representation of the Dirac �-matrices.
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2. Lorentz group representation based on complex electromagnetic field tensor
In flat Minkowski space M , the spacetime coordinates of an event are denoted by x� (� =
0, 1, 2, 3), with x0 = ct. The Minkowski inner product is x ⋅ y = ���x

�y� , where the Minkowski
metric is ��� = diag(1,−1,−1,−1). The usual Lorentz group representation � can be associated

with an electromagnetic field tensor F �� (E,B)

F = F �� =

⎛⎜⎜⎝
0 E1 E2 E3

E1 0 cB3 −cB2

E2 −cB3 0 cB1

E3 cB2 −cB1 0

⎞⎟⎟⎠ , (1)

where E denote the electric field intensity and B the magnetic field intensity, as follows.
Since a magnetic field generates a rotation, a generator of a rotation about the direction

n ∈ ℝ3 is defined by F �� (0,B), with cB = −n. Thus, the representation of the rotation about

the direction n with angle ! is given by the operator exp(F �� (0,−n)!). For example, a rotation
ℜ1 about the x1-axis (rotation in the x2x3 plane) is represented as

�(ℜ1)(!) = Λ23(!) = exp(

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠!) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 cos! − sin!
0 0 sin! cos!

⎞⎟⎟⎠ . (2)

Similarly, since an electric field generate boosts, a generator of a boost in the direction n can be

identified with F �� (n, 0). Thus, the representation of the boosts in the direction n with rapidity

! is given by the operator exp(F �� (n, 0)!). For example, boosts B1 in the x-axis are represented
as

�(B1)(!) = Λ01(!) = exp(

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠!) =

⎛⎜⎜⎝
cosh! sinh! 0 0
sinh! cosh! 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (3)

Our complex prepotential S(x) is a function M → ℂ on Minkowski space M . Its gradient at
any spacetime point belongs to the complexified cotangent space at that point, which we identify
with ℂ4. Denote by Mc the complex space ℂ4 endowed with the bilinear complex-valued form
x ⋅y = ���x

�y� , which can be considered as a complexification of Minkowski space. The bilinear
form on Mc is an extension of the Minkowski inner product.

Obviously, the representation � of the Lorentz group on M can be extended linearly to a
representation on Mc. We claim that this representation can be decomposed as follows.

Claim 1. The representation � of the Lorentz group on Mc can be decomposed into a product

� = �̃�̃∗ (4)

of two commuting representations �̃ and �̃∗ on Mc.

In order to prove this claim, we will decompose the generator F�� of the representation � into
a sum

F�� =
1

2
ℱ�� +

1

2
ℱ̄�� , (5)

where ℱ�� is the complex electromagnetic tensor and its complex adjoint ℱ̄�� , defined below.
An electromagnetic field can be defined by the Faraday vector F = E + icB. Note that

since i is a pseudo-scalar and B is a pseudo-vector, the expression iB is a vector which is
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independent of the chosen orientation of the space. The Faraday vector is used to describe the
Lorentz invariant field constants, see for example [18]. In [9], Friedman and Danziger introduced
a complex electromagnetic tensor ℱ�� for the description of an electromagnetic field, similar to

the one introduced by Silberstein in [22] and [23]. Complexified electromagnetic fields were also
studied by A. Gersten [14] and played an important role in obtaining explicit solutions in [12]
and [8] for motion of a charge in constant electromagnetic field.

Let F�� (E,B) be the usual electromagnetic tensor. The complex electromagnetic tensor

ℱ�� (E,B) is defined by ℱ�� (E,B) = F�� (F,−iF) or

ℱ�� =

⎛⎜⎜⎝
0 F1 F2 F3

F1 0 −iF3 iF2

F2 iF3 0 −iF1

F3 −iF2 iF1 0

⎞⎟⎟⎠ =

3∑
j=1

(�j)��Fj , (6)

where (�j)
�
� are the Majorana-Oppenheimer matrices (see [6])

(�1)�� =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0

⎞⎟⎟⎠ , (�2)�� =

⎛⎜⎜⎝
0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0

⎞⎟⎟⎠ ,

(�3)�� =

⎛⎜⎜⎝
0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0

⎞⎟⎟⎠ . (7)

Note that the electromagnetic tensor F�� is the real part of the complex tensor ℱ�� . Equation

(5) holds now if we define the complex conjugate tensor to be ℱ̄�� =
∑3

j=1(�̄j)
�
� F̄j .

The Majorana-Oppenheimer matrices can be derived from the connection of the 4-potential
and the Faraday vector, as follows. It is known that if A� is the 4-potential of the electromagnetic

field, then Ej = F0j = ∂jA0−∂0Aj = A0,j−Aj,0, where ∂� = ∂
∂x� and Bj = (∇×A)j , where ∇×

is the curl which is applied to the vector potential. Thus, the the j component of the Faraday
vector is connected to the potential as

F j = (�j)��∂�A� = (�j)��A�,� , (8)

showing that the matrices �j connect the 4-potential to the Faraday vector of the electromagnetic
field. Using (6), we can define a differential operator which connects the 4-potential with the
the complex electromagnetic tensor ℱ�� :

ℱ�� =

3∑
j=1

(�j)��(�j)��∂�A� = ∇×A , (9)

where the curl ∇× on Mc is defined as

∇× =

3∑
j=1

(�j)
�
�(�j)��∂� . (10)

We will now derive a Lorentz group representation on Mc based on the Majorana-
Oppenheimer matrices. In Section 6 we will show that this representation can be identified
with the known spin-half representation of the Lorentz group. To define this representation, it
is enough to define the representation on the generators of boosts and rotations.
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Definition 1. Define a representation �̃ on Mc by defining generators B̃j of boosts Bj in the
direction of xj to be 1

2�
j and generators R̃j of rotations ℜj about the direction xj to be i

2�
j .

Claim 2. The representation �̃ is a Lorentz group representation on Mc.

Direct calculation shows that the operators R̃j = i
2�

j obey the same commutator relations
as the generators of the rotation group SO(3):

[R̃j , R̃k] = −"jkl R̃
l,

where "ijk is the Levi-Civita tensor. Moreover, the B̃j = 1
2�

j matrices obey the same commutator
relations as the generators of boosts in the Lorentz group:

[B̃j , B̃k] = "jkl R̃
l, [R̃j , B̃k] = "jkl B̃

l

This proves Claim 2.
The complex adjoints �̄j = −i

2 �̄
j and 1

2 �̄
j satisfy similar relations. This leads to a second

Lorentz group representation on Mc.

Definition 2. Define a representation �̃∗ on Mc by defining generators B̃j of boosts Bj in the
direction of xj to be 1

2 �̄
j and generators R̃j of rotations ℜj about the direction xj to be i

2 �̄
j.

Moreover, the two sets of operators {�j} and {�̄k} commute:

[�j , �̄k] = 0. (11)

Thus, the representations �̃ and �̃∗ commute. Since

expF�� = exp(
1

2
ℱ�� +

1

2
ℱ̄�� ) = exp(

1

2
ℱ�� ) exp(

1

2
ℱ̄�� ),

the representation �, associated with the tensor F�� , can be decomposed as a product (4) of
representations �̃ and �̃∗. This proves Claim 1.

In addition to the above commutation relations, Majorana-Oppenheimer matrices also satisfy
anti-commutation relations, which are very helpful for the calculation of the exponents of these
matrices. The anti-commutation relations are

{�j , �k} =
1

2
(�j�k + �k�j) = �jkI , (12)

which implies that (�j)2 = I. Using these relation and the power series expansion of the exponent
function, the exponents of these matrices are

exp(�j
!

2
) = cosh

!

2
I + �j sinh

!

2

exp(�j
i!

2
) = cos

!

2
I + i�j sin

!

2
.

We can define now explicitly the representation under �̃ of the rotations and the boosts of
the Lorentz group. For example, the rotation ℜ1 about the x1-axis or rotation in the x2x3 plane
by an angle ! is represented by

�̃(ℜ1)(!) = Υ23(!) = exp(i�1!

2
) = cos

!

2
I − i�1 sin

!

2
(13)
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=

⎛⎜⎜⎝
cos!/2 −i sin!/2 0 0
−i sin!/2 cos!/2 0 0

0 0 cos!/2 − sin!/2
0 0 sin!/2 cos!/2

⎞⎟⎟⎠ .

The representation �̃∗ of this rotation is given by Ῡ23(!), the complex conjugate of the above
matrix. In the x2x3 plane, both �̃(ℜ1) and �̃∗(ℜ1) define a rotation by an angle !/2, and
their product Υ23(!)Ῡ23(!) = Λ23(!), defined by (2), is a rotation by an angle ! in this plane.
However, in the plane x0x1, the rotation Λ23(!) under � is the identity, while both Υ23(!) and
Ῡ23(!) define a “complex rotation” in the plane {x0 + ix1 : x0, x1 ∈ ℝ} by angles −!/2 and
!/2, respectively, indicating the there is a rotation around the x1 axis. This observation needs
further understanding.

Similarly, the boost in the x1-direction with parameter ! is

�̃(B1)(!) = Υ01(!) = exp(�1!

2
) = cosh

!

2
I + �1 sinh

!

2
(14)

=

⎛⎜⎜⎝
cosh!/2 sinh!/2 0 0
sinh!/2 cosh!/2 0 0

0 0 cosh!/2 −i sinh!/2
0 0 i sinh!/2 cosh!/2

⎞⎟⎟⎠ .

The representation �̃∗ of this boost is given by Ῡ01(!), the complex conjugate of the above
matrix. In the x0x1 plane, both �̃(B1) and �̃∗(B1) define boosts in the x1 direction with
rapidity !/2, and their product Υ01(!)Ῡ01(!) = Λ01(!), defined by (3), is a boost with rapidity
! in the x1 direction. However, in the x2x3 plane, the boost Λ01(!) under � is the identity,
while both Υ01(!) and Ῡ01(!) define “complex boosts” in the plane {x2 + ix3 : x2, x3 ∈ ℝ},
with rapidity −!/2 and !/2, respectively, and the product of these boosts is the identity.

Note that the operators Υ�� are isometries on the space Mc. The representation �̃, defined
by the operators Υ��, is a spin 1/2 representation of the Lorentz group on Mc. Similarly, the
representation �̃∗ is defined by the operators Ῡ��, which are obtained by taking the complex
conjugate of Υ��. This is also a spin 1/2 representation of the Lorentz group on Mc, and it
commutes with the representation �̃. In section 6, we will show that the representation �̃ can
be identified with the usual representation of the Lorentz group on the spinors.

Let F �� be the electromagnetic tensor of some electromagnetic field. This tensor is covariant
under the representation � of the Lorentz group. What is the covariance of the complex tensor

ℱ�� associated with F �� ? We will show the following.

Claim 3. The covariance of the electromagnetic tensor F �� under the representation � is

equivalent to the covariance of the corresponding tensor ℱ�� under the representation �̃.

Let Λ be any element of the representation � of the Lorentz group. By (4), there is an element
Υ of �̃ such that Λ = ΥῩ. Using that ℱ ,Υ ∈ span �j , these operators commute with any �̄k

and thus with ℱ̄ , Ῡ. Thus,

F ′ = ΛFΛ−1 =
1

2
(ΥῩℱῩ−1Υ−1 + ΥῩℱ̄Ῡ−1Υ−1)

=
1

2
(ΥℱΥ−1 + Ῡℱ̄Ῡ−1) =

1

2
(ℱ ′ + ℱ̄ ′).

This proves Claim 3.
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3. Definition of the prepotential
Denote by P a point in Minkowski space M at which we want to define the prepotential.
We will call P the observer’s point and denote his coordinates by x = x�. Denote by
x̌(�) = x̌�(�) : ℝ → M the worldline of the charge q generating our electromagnetic field,
as a function of its proper time. Let the point Q = x̌(�(x)) be the unique point of intersection
of the past light cone at P with the worldline x̌(�) of the charge. The time on the worldline
of the charge corresponding to this intersection is uniquely determined by the point x. It is
called the retarded time and will be denoted by �(x). Note that radiation emitted at Q at the
retarded time will reach P at time t = x0/c corresponding to this point. Our prepotential S(x)
will depend on the relative position

r(x) = x− x̌(�(x)) (15)

of the charge at retarded time �(x), see Figure 1.

P

Q

u

r

L

Figure 1. The four-vectors associated with an observer and a moving charge.

The relative position r is a null vector. Hence,

(r0 + r3)(r0 − r3) = (r1 + ir2)(r1 − ir2). (16)

In this decomposition, we have split the four coordinates of r into two groups: the first group
contains the time component r0 and the third spatial component r3. The second group contains
the first two spatial components r1 and r2. We can now define a dimensionless complex constant
�, as follows.

Definition 3. For any null-vector r in Mc, we define a dimensionless complex scalar � by

�(r) =
r0 + r3

r1 − ir2
=
r1 + ir2

r0 − r3
. (17)

For any x ∈ M and any world-line x̌(�), we define �(x) = �(r(x)), where the relative position
r(x) is defined by (15).
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The scalar �(r) can be identified as a simple function of the stereographic projection of the
direction of the vector part r of r from the celestial sphere to the Argand plane, as follows.
Since r is a null vector, it can be decomposed as (∣r∣, r) and is defined uniquely by its vector
part r. Define r̂ = r/∣r∣, a unit vector in the direction vector of r, and a null vector r̂ = (∣r̂∣, r̂).
Since �(r) is the same for any multiple of r, we have �(r) = �(r̂). Then, as shown in [20] p. 11,
�(r) = �(r̂) = ei'cot �2 , where ', � are the angles of standard spherical coordinates of r̂. This
shows that �(r) depends only on the direction from the observer to the charge at the retarded
time.

There is no way to associate to every null vector r a non-trivial scalar which is invariant
under the usual representation �. However, for the representation �̃ we have:

Claim 4. For any null vector r, the complex constant �(r), defined by (17), is invariant under
the representation �̃ on Mc.

The boost Υ01 of �̃ in the x1-direction is defined by (14). Applying this boost to the vector
r yields

Υ01(r) = cosh(!/2)(r0, r1, r2, r3) + sinh(!/2)(r1, r0,−ir3, ir2).

Using (17), we have

Υ01(�) = �(Υ01(r)) =
cosh(!/2)(r0 + r3) + sinh(!/2)(r1 + ir2)

cosh(!/2)(r1 − ir2) + sinh(!/2)(r0 − r3)
=

r0 + r3

r1 − ir2
⋅ 1 + tanh(!/2)(r1 + ir2)/(r0 + r3)

1 + tanh(!/2)(r0 − r3)/(r1 − ir2)
=

r0 + r3

r1 − ir2
⋅ 1 + tanh(!/2)/�̄

1 + tanh(!/2)/�̄
= �,

showing that � is invariant under the boost Υ01. Similarly, one may show the invariance of �
under any boost and rotation of the representation �̃. This proves Claim 4.

Definition 4. We define the prepotential S(x) at point x of an electromagnetic field generated
by a moving charge q as

S(x) =
q

2
ln �(x) =

q

2
ln �(r(x)), (18)

where �(r) is defined by (17) and the relative position of the charge r(x) is defined by (15).

From Claim 4, it follows that the prepotential is invariant under the representation �̃ on
Mc. Consider an electromagnetic field generated by any charge distribution �(x). The scalar
prepotential for this field is defined by

S(x) =
1

2

∫
K−(x)

�(r)�(x+ r)d3r, (19)

where K−(x) denotes the backward light-cone at x, and the integration is by the 3D volume on
this cone.

The geometric meaning of this prepotential can be understood if we introduce relativistic
bipolar coordinates (%0, %1, �, '):

x0 = %0 cosh �, x1 = %1 cos', x2 = %1 sin', x3 = %0 sinh �.

The angle ' in these coordinates is the same angle ' occurring in polar and spherical coordinates.
However, the angle � differs from the angle � of spherical coordinates. These coordinates fit better
to our model as they give a simple form for the prepotential. The light-cone in these coordinates
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has the simple form %0 = %1 = %, a hyperplane. For any null-vector r on the light-cone, the
invariant constant �(r), defined by (17), in relativistic bipolar coordinates is

�(r) =
r0 + r3

r1 − ir2
=

%e�

%e−i'
= e�+i'.

The prepotential of a moving charge is

S(x) =
q

2
(� + i'),

which is a multiple of the complex angle � + i' of the relative position r(x) of the charge.

4. The prepotential and the Faraday vector of the field
4.1. Connection between the prepotential and the Faraday vector of a field
The 4-potential will be defined as a conjugate of the gradient of the prepotential S(x). Since the
prepotential S(x) is invariant under the representation �̃, we want our conjugation to commute
with this representation. By Definition 1 of the representation �̃, the conjugation needs to
commute with any operator �j . Using (11), we can choose any operator �̄k to define the
conjugation. Since, in (16), and in the definition of �, we choose the third spatial component to
join the time component, also here we chose the �̃ covariant conjugation C on Mc to be given
by multiplication by �̄3:

C = (�̄3)�� =

⎛⎜⎜⎝
0 0 0 1
0 0 i 0
0 −i 0 0
1 0 0 0

⎞⎟⎟⎠ . (20)

The following diagram shows the derivation of the complex tensor ℱ of the field from its
prepotential S(x):

S
∇−−−−→ ∇S C−−−−→ A = C(∇S)

∇×−−−−→ ℱ .
By differentiating the prepotential and taking its conjugate, we obtain the 4-potential A. Then
we use (9) to get from A to the complex tensor ℱ of the field. The components Fj of the Faraday
vector can be found by (8) as

Fj = ∂�(�j)��(�̄3)��∂�S . (21)

Claim 5. The Faraday vector Fj defined by (21) is invariant under the representation �̃

This claim follows from the following facts. Claim 4 implies that S(x) is �̃ invariant. By
definition of the conjugation, (�̄3)�� is �̃ invariant. The remaining operators together form a �̃
invariant operator.

The last expression can be simplified, if for each j = 1, 2, 3, we introduce a new tensor
((�j)�� = (�j)��(�̄3)��. Then we can rewrite (21) as

Fj = (�j)��∂�∂�S . (22)

The new tensors are

(�1)�� =

⎛⎜⎜⎝
0 0 −i 0
0 0 0 −1
−i 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , (�2)�� =

⎛⎜⎜⎝
0 i 0 0
i 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎠
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(�3)�� =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ .

Thus, (22) defines the following explicit formulas for the connection between the prepotential
S(x) and the Faraday vector.

F1 = −2(S,13 + iS,02)
F2 = −2(S,23 − iS,01)
F3 = S,00 + S,11 + S,22 − S,33

(23)

Based on these formulas, we obtain the following gauges for the prepotential.

Claim 6. The prepotential S(x) is not determined uniquely by the electromagnetic field. Let
g(x) be a function on Mc from the following list, or a combination of such functions:

(i) g(x) = g(x1, x2) is harmonic, that is, g,11 + g,22 = 0,

(ii) g(x) = g(x0, x3) satisfies the wave equation, that is, g,00 − g,33 = 0,

(iii) g(x) is of order 1 in x�.

Then the transformation of the prepotential

S′(x) = S(x) + g(x) (24)

does not affect the field. A function g(x) of this type will be called the prepotential gauge.

To prove the claim, it is enough to check that the field of the gauge g(x) defined by (23) is
zero. In case (i), we have g,0 = g,3 = 0. Since each term of the components F1, F2 of the field in
(23) involves differentiation by x0 or by x3, these components are zero. The third component
F3 is zero since g,00 = g,33 = 0 and g,11 + g,22 = 0. Similarly, for case (ii), we have g,1 = g,2 = 0.
Since each term of the components F1, F2 of the field in (23) involve differentiation by x1 or
by x2, these components are zero. The third component F3 is zero since g,11 = g,22 = 0 and
g,00 − g,33 = 0. Since each component of the field involves second derivatives, it will vanish for
any function g(x) of order 1 in x�. This completes the proof of the claim.

We demonstrate now the use of formulas (23) and Claim 6 in calculating the field of a rest
charge at the origin from its prepotential. Consider a rest charge q at the origin. The worldline
of this charge is x̌(�) = (�, 0, 0, 0). Thus, the relative position of the charge is r = (∣x∣, x1, x2, x3),

where ∣x∣ =
√

(x1)2 + (x2)2 + (x3)2. From (17) and (18),

S′(x) =
q

2
ln
∣x∣+ x3

x1 − ix2
=
q

2
ln(∣x∣+ x3)− q

2
ln(x1 − ix2) .

The function ln(x1 − ix2) is harmonic, and, by Claim 6(i), is a prepotential gauge.

Example 1. For a rest charge q at the origin, we define the prepotential to be

S(x) =
q

2
ln(∣x∣+ x3) . (25)

Note that in this case the prepotential is well defined for all x ∕= 0 and could be chosen to be
real valued.

Claim 7. The prepotential S(x) defined by (25) defines the electromagnetic field of the rest
charge q at the origin to be E = r

∣r∣3 and B = 0. Moreover, S(x) satisfies the wave equation

□S(x) = 0.
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Since S(x) is independent of x0, we have S,0 = 0. Direct calculation shows that ∂
∂xj
∣x∣ = xj

∣x∣ .

Thus, we get

S,1 =
q

2∣x∣
x1

∣x∣+ x3
, S,2 =

q

∣x∣2
x2

∣x∣+ x3
,

and

S,3 =
q

2

1

∣x∣+ x3

(
x3

∣x∣
+ 1

)
=

q

2∣x∣
.

The 4-potential A in this case is

A = C∇S =
q

2∣x∣
(1,−i x2

∣x∣+ x3
, i

x1

∣x∣+ x3
, 0) .

This potential behaves similarly to the usual 4-potential: when ∣x∣ approaches infinity, it behaves
like 1

∣x∣ .

By use of (23), we get

F1 = −2(S,13 + iS,02) = −2
∂

∂x1
S,3 = −2

∂

∂x1

q

2∣x∣
=
qx1

∣x∣3
,

F2 = −2(S,23 − iS,01) = −2
∂

∂x2
S,3 = −2

∂

∂x2

q

2∣x∣
=
qx2

∣x∣3
.

To calculate F3 using (23), we need first to calculate S,��.

S,11 =
∂

∂x1

q

2

x1

∣x∣(∣x∣+ x3)
=
q

2

∣x∣2 + x3∣x∣ − 2(x1)2 − x3(x1)2/∣x∣
∣x∣2(∣x∣+ x3)2

,

S,22 =
∂

∂x2

q

2

x2

∣x∣(∣x∣+ x3)
=
q

2

∣x∣2 + x3∣x∣ − 2(x2)2 − x3(x2)2/∣x∣
∣x∣2(∣x∣+ x3)2

.

This implies that

S,11 + S,22 =
qx3

2∣x∣3
.

Since S,00 = 0 and S,33 = −qx3
2∣x∣3 , equation (23) yields

F3 =
qx3

∣x∣3

and □S(x) = S,00 − (S,11 + S,22)− S,33 = 0. This proves the claim.
As a second example, we will find now the prepotential of an infinitely long charged rod. We

start with a prepotential of a finite rod on the x3 axis, from x3 = −L to x3 = L, with charge
density �. Denote by l the position of the charge on the rod, so that −L < l < L. The worldline
of the charge is x̌(�) = (�, 0, 0, l), implying that r = (�, x1, x2, x3 − l), with

�(l) =
√

(x1)2 + (x2)2 + (x3 − l)2 =
√
%2 + (x3 − l)2 , (26)

where % =
√

(x1)2 + (x2)2. Thus, from (17), the zeta factor for the charge is

�(r) =
�(l) + x3 − l
x1 − ix2

,
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and the prepotential of the rod is

S(x) =
�

2

∫ L

−L
ln
�(l) + x3 − l
x1 − ix2

dl =
�

2

∫ L

−L
ln(�(l) + x3 − l)dl − �

2

∫ L

−L
ln(x1 − ix2)dl , (27)

with � defined by (26).
The second integral is equal to 2L ln(x1 − ix2), which is a harmonic function in x1, x2, and,

by Claim 6(i), is a gauge and will be removed from the prepotential. For the first integral, we
use a substitution z = x3 − l, implying dl = −dz. After the substitution, the first integral is

−
∫ x3−L

x3+L
ln(
√
%2 + z2 + z)dz =

√
%2 + z2 − z ln(

√
%2 + z2 + z),

and the prepotential (27) is equivalent to

S(x) =
�

2

(
(x3 + L) ln(�(−L) + x3 + L)− (x3 − L) ln(�(L) + x3 − L) + �(L)− �(−L)

)
.

Using that �(L) + x3 − L = %2

�(L)−x3+L
and �(L)− �(−L) = −4x3L

�(L)+�(−L) , we get

S(x) =
�

2

(
−x3 ln %2 + L ln %2 − 4x3L

�(L) + �(−L)

)
+
�

2

(
(x3 + L) ln(�(−L) + x3 + L) + (x3 − L) ln(�(L)− x3 + L)

)
.

The expression L ln %2 = L ln((x1)2 + (x2)) is a harmonic function in x1, x2, and, by Claim 6(i),
is a gauge and will be removed from the prepotential.

In order to be able to pass to the limit L → ∞, we will subtract from the prepotential a
gauge function with a behavior similar to S(x) for large L. An example of such a function is
2x3 ln 2L− 2x3, which by Claim 6(iii) is a gauge. We obtain

S(x) =
�

2

(
−x3 ln %2 − { 4x3L

�(L) + �(−L)
− 2x3}

)
+
�

2

(
(x3 + L) ln(�(−L) + x3 + L) + (x3 − L) ln(�(L)− x3 + L)− 2x3 ln 2L

)
.

Since limL→∞ �(±L)/L = 1, we have

lim
L→∞

4x3L

�(L) + �(−L)
− 2x3 = lim

L→∞

4x3

�(L)/L+ �(−L)/L
− 2x3 = 0

and
lim
L→∞

(x3 + L) ln(�(−L) + x3 + L) + (x3 − L) ln(�(L)− x3 + L)− 2x3 ln 2L = 0

Thus, the prepotential of an infinite rod is

S(x) = −�
2
x3 ln %2 = −�x3 ln

√
(x1)2 + (x2)2 . (28)

By applying formulas (23) to this prepotential, we get

F1 = −2(S,13 + iS,02) = �2x1

%2

F2 = −2(S,23 − iS,01) = �2x2

%2

F3 = S,00 + S,11 + S,22 − S,33 = 0 ,

which implies that the electric field is E(x) = 2�
%2

(x1, x2, 0) and that there is no magnetic field,

as is known for the field of a charged rod.
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4.2. The Faraday vector F from the prepotential of a moving charge
Consider now any charge q with worldline x̌(�). In order to be able to calculate the field of
this charge from its prepotential S(x) defined by (18), we will use formulas (23). To apply this
formula, we have to calculate some second partial derivatives of S(x). The difficulty is that S is
a function of �(r(x)), and r(x) depends also on the worldline x̌(�). The idea is to present these
derivatives in covariant form. This means that we want to express them by covariant vectors,
namely, the relative position r of the observer with respect to the charge at the retarded time
�(x), the 4-velocity u = dx̌

d� (�(x)) and the 4-acceleration a = du
d� (�(x)) at the retarded time.

From the definition (18) of the prepotential S(x) its derivative by x� is

S(x),� =
q

2

�,�
�

=

(
r0
,� + r3

,�

r1 − ir2
−

(r0 + r3)(r1
,� − ir2

,�)

(r1 − ir2)2

)
r1 − ir2

r0 + r3
=
r0
,� + r3

,�

r0 + r3
−
r1
,� − ir2

,�

r1 − ir2
. (29)

Thus, to be able to calculate the derivatives of S(x), we need a formula for the derivatives of
the relative position r(x) defined by (15). The partial derivative r,� of the position vector r(x)
by x� is

r,� = x,� − y,�(�(x)) = x,� − ∂y/∂� �,� = x,� − u�,�.

Since r(x) is null, we have r ⋅ r,� = 0, where a ⋅ b = ���a
�b� denote the Minkowski inner product.

Thus,
0 = r ⋅ r,� = r ⋅ x,� − (r ⋅ u)�,�,

which imply that the derivative of the retarded time is

�(x),� =
r�
r ⋅ u

. (30)

This mean that varying the observers position by dx� will cause the parameter � to change
infinitesimally by

r�
r⋅udx

�. Since (r)2 = 0 and (u)2 = 1, from the Cauchy-Schwartz inequality it
follows that r ⋅ u is always non-zero. So, equation (30) is always well defined.

Substituting this into the derivative of the position vector we get

r�,� = x�,� −
r�u

�

r ⋅ u
= ��� −

r�u
�

r ⋅ u
, (31)

where ��� denotes the Kronecker delta function. This formula could be understood as follows. An
infinitesimal variation dx� of the observers position causes also a change of the charge position
at the retarded time. The relative position r under such variation is effected by the two changes.
The first term in (31) the effect of infinitesimal variation of the observers position, while the
second one express change of the charge position at the retarded time.

Substituting derivative of the position vector (31) in (29) we obtain a covariant form for the
derivative of the prepotential S(x) as a function of the the relative position r and the 4-velocity
of the charge u at the retarded time. To calculate the electromagnetic field of of a moving
charge from its prepotential S(x), according (23) we need to calculate some second derivatives
of S(x). This could be done by differentiating S,�. The expression of S,� involve involve only
non-constant vectors r and u. The derivatives of r are given by (31). The derivatives of u, by
use of (30), are

u,� =
∂u

∂�
�(x),� =

ar�
r ⋅ u

. (32)

Since an infinitesimal change of the observers position by dx� causes the change of � by amount
r�
r⋅udx

�, the variation of the 4-velocity u of the charge caused by this change is a multiple of the
acceleration a of the charge by this amount.
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To simplify the result of the differentiation by use of computer algebra we can introduce for
any j = 1, 2, 3 an anti-symmetric scalar product on vectors of Mc by

[a, b]j = (�j)��a
�b� = �ja ⋅ b, a, b ∈Mc . (33)

By use of computer algebra (23) and using the above formulas for the derivatives we get

F j = q

(
[r, u]j

(r ⋅ u)3
+

[r, a]j (r ⋅ u)− [r, u]j (r ⋅ a)

2(r ⋅ u)3

)
(34)

Using 1 + 3 decomposition of 4-vectors it can be shown that these formulas coincide with the
know field of a moving charge as derived from the Lienard-Wiecher potential, see [16] p.664.
Thus, we have shown that the prepotential S(x) of a moving charge defined by (18) produces by
use of (23) the known electromagnetic field of such charge. Moreover, the superposition principle
and that the connection of the prepotential to the field is linear, for a general electromagnetic
field, which is produce by a collection of moving charges, by applying (23) to the prepotential
S(x) defined by formula (19) will recover properly this field.

5. The Maxwell equations of the prepotential
In this section we define the Maxwell equations for the prepotential S(x) of the electromagnetic
field. Consider an electromagnetic field generated by sources J� = (�, j1, j2, j3). The pair of the
scalar Maxwell equations

∇ ⋅E = �, ∇ ⋅B = 0

for the Faraday vector F = E + icB can be rewritten as one equation

∇ ⋅ F = � (35)

Substitute the values of F from (23) to get

F1,1 + F2,2 + F3,3 = −2S,113 − 2iS,102 − 2S,223 + 2iS,201 + S,300 + S,311 + S,322 − S,333

= S,003 − S,113 − S,223 − S,333 = � .

So, the first Maxwell equation for S(x) is:

∂3(□S) = � (36)

The vector Maxwell equations are

∇×E + Ḃ = 0, ∇×B− Ė = j. (37)

They can be rewritten by use of the Faraday vector as one equation

F,0 + i∇× F = −j. (38)

Substitute the values of F from (23)) for the first component to get

F1,0 + iF3,2 − iF2,3 = −2S,013 − 2iS,002 + i(S,200 + S,211 + S,222 − S,233) + 2i(S,323 − iS,301)

= i(−S,002 + S,211 + S,222 + S,233) = −j1 .

So, the second Maxwell equation for S(x) is:

−i∂2(□S) = −j1 . (39)
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For the second component we get

F2,0 + iF1,3 − iF3,1 = −2S,023 + 2iS,001 − 2i(S,313 + iS,302 − i(S,100 + S,111 + S,122 − S,133)

= i(S,100 − S,111 − S,122 − S,133) = −j2 .

So, the third Maxwell equation for S(x) is:

i∂1(□S) = −j2 . (40)

For the third component we get

F3,0 + iF2,1 − iF1,2 = S,000 + S,011 + S,022 − S,033 − 2i(S,123 − iS,101) + 2i(S,213 + iS,202)

= S,000 − S,011 − S,022 − S,033 = −j3 .

So, the forth Maxwell equation for S(x) is:

∂0(□S) = −j3 . (41)

Note since the left-hand side of these equations is a co-vector we lower the index of the sources
of the field by J� = (�,−j1,−j2,−j3). We will also apply the conjugation C defined by (20) to
the gradient ∂ to get

C��∂� = (∂3,−i∂2, i∂1, ∂0) .

With this notation we can rewrite our 4 Maxwell equations (36), (39),(40) and (41), as

C��∂�(□S(x)) = J�(x) , (42)

or in operator form
C∇(□S(x)) = J(x) . (43)

Our Maxwell equations (43)have some similarity to the ones obtained by use of Clifford algebras,
see [4].

The Maxwell equation(s) for the prepotential we obtained is a third order system of equations.
But this system can be decomposed into two systems of equations. The first system is a first
order one C∇Φ = J . Using that C is a symmetry, meaning C2 = I, this system can be rewritten
as ∇Φ(x) = CJ(x). The meaning of such system is looking for a scalar potential Φ(x) for a
vector-field CJ(x). A similar formula is obtained in [3] p.98 for the spinor form of Maxwell
equation describing the connection of the sources of the field to the Faraday vector. The second
system is a known second order system □S(x) = Φ(x) for Φ(x), solved in the previous step.
Thus, equation (43) is equivalent to

∇Φ(x) = CJ(x), □S(x) = Φ(x) . (44)

Claim 7 show that S(x) satisfy the wave equation □S(x) = 0 outside the rest charge. By
using the covariance of such property, this will hold for the prepotential of any moving charge.
Using the superposition principle the prepotential of any electromagnetic field will satisfy the
wave equation

□S(x) = 0 (45)

for x outside the sources of the field.
We will demonstrate now the use of the Maxwell equations (43) for derivation of the

prepotential and the field of a current I in a thin long straight wire. We will assume that the
wire is positioned on the x3-axis. The field of such current is generated by negatively charged
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electrons with line density �̃ moving with velocity v in the negative direction of the x3-axis.
These charges are compensated by positive charges of the same density resting in the wire. To
express the fact that the wire is thin we will use 2D Dirac-delta �(%) for % =

√
(x1)2 + (x2)2

with the property that the integral of this function over a domain D in x1, x2 plane is equal 1
if the point (0, 0) is in D and 0 otherwise.

The current density of the electron sources of the field are given by j(e)� =
−�̃�(%)
(1, 0, 0,−v/c), where 
 = 
(v) = (1 − v2/c2)−1/2. So, the effective density will be
� = �̃
. For the positive charges j(p)� = ��(%)(1, 0, 0, 0). So, the total current of the sources of
the field will be j� = ��(%)(0, 0, 0, vc ) and using that I = �v, j� = �(%)(0, 0, 0, Ic ). The equation
for Φ(x) from (44) become

Φ,0 = −I
c
�(%), Φ,1 = Φ,2 = Φ,3 = 0 .

Integrating the first equation and using that the average value of the Dirac delta is zero we get
Φ(x) = − I

c �(%)x0.
Now we need to solve the equation (44) □S(x) = Φ(x) for the prepotential S(x). From [19]

it follows that the electromagnetic field must be normal to the wire, implying F3 = 0 and by
use of (23) that S,00 + S,11 + S,22 − S,33 = 0. Subtracting from the last equation □S(x) = Φ(x)
we get

S,11 + S,22 = −1

2
Φ(x) =

I

2c
�(%)x0 (46)

and adding these equations we get

S,00 − S,33 =
1

2
Φ(x) = − I

2c
�(%)x0 . (47)

We can look for a solution for equations (46) and (47). We will decompose the prepotential
S(x) as a sum of two components S(x) = S1(x) + S2(x), where each component will satisfy
one of the equations and vanish by the differential operator of the second one. We will look
for S1(x) of the form S1(x) = I

2cx
0f(x1, x2) for some function f(x1, x2). The equation (46)

for f become ∇2f(x1, x2) = �(%). It is known ([1] p.760) that the solution of such equation is
f(x1, x2) = −1

2� ln %. Thus, S1(x) = I
4�cx

0 ln % satisfy equation (46) and vanish by the differential
operator of equation (47).

If we take S2(x) to be of the form S2(x) = I
2c�(%)x0g(x3), then such function will vanish

differential operator of (46) and for (47) will give g(x3) = −(x3)2/2. Thus the prepotential S(x)
for a strait wire is

S(x) =
I

4c
x0

(
1

�
ln %− (x3)2�(%)

)
. (48)

By used of (23) we can now calculate the Faraday vector of the field outside the wire. Since
ln % is harmonic outside the wire we have F3 = S,00 + S,11 + S,22 − S,33 = 0. Direct calculation

give F1 = −2(S,13 + iS,02) = −i I
2�c

x2

%2
and F2 = −2(S,23 − iS,01) = i I

2�c
x1

%2
. Thus, the electric

field is zero and the magnetic field is

B1 =
I

2�c2

−x2

%2
, B2 =

I

2�c2

x1

%2
, B3 = 0.

This corresponds to the known formulas for such field (see [13] p.14-4).
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6. Prepotential, spinors and the Dirac matrices
The prepotential S(x) of a moving charge that we introduced was based on the decomposition
(16) of any null vector in Mc. This decomposition involve four terms, which could be considered
as coordinated of the null vector r in a new basis. This basis on Mc is called the Bondi null
tetrad and is called also Newman-Penrose basis. It is defined as

n0 = n =
1√
2

(e0 + e3), n1 = m̄ =
1√
2

(e1 − ie2),

n2 = m =
1√
2

(e1 + ie2), n3 = l =
1√
2

(e0 − e3). (49)

For the significance of the Bondi tetrad see [20], [17] and [7]. All vectors n are null vectors in
Mc. Note that application of complex conjugation on Mc, which is equivalent to replacing i with
−i, maps the Bondi tetrad into itself, but exchanges n1 with n2. This mean that also here i is
a pseudo-scalar which with the change of orientation, that may be expressed by change of the
order of the basis vectors, changes its sign.

We will denote by y� the coordinates of a vector in M with respect to the Bondi tetrad,
meaning x�e� = y�n�. Then, the relation between the coordinates is

x0 =
1√
2

(y0 + y3), x1 =
1√
2

(y1 + y2), x2 = i
1√
2

(y2 − y1), x3 =
1√
2

(y0 − y3), (50)

or inversely,

y0 =
1√
2

(x0 + x3), y1 =
1√
2

(x1 + ix2), y2 =
1√
2

(x1 − ix2), y3 =
1√
2

(x0 − x3). (51)

The coordinate transformation could be expressed by the transfer matrix L = Lkj given by

L =
1√
2

⎛⎜⎜⎝
1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1

⎞⎟⎟⎠ , L−1 =
1√
2

⎛⎜⎜⎝
1 0 0 1
0 1 1 0
0 −i i 0
1 0 0 −1

⎞⎟⎟⎠ . (52)

Thus,
y� = L��x

�, x� = (L−1)��y
� . (53)

The metric tensor � in the Bondi tetrad is given by

�̃ =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ = �̃−1. (54)

The bilinear symmetric scalar product of two 4-vectors a = a�n� and b = b�n� is given by

a ⋅ b = �̃��a
�b� .

This, for example, implies that

(a)2 = a ⋅ a = 0 ⇔ a0a3 = a1a2 ⇔ a2

a0
=
a3

a1
⇔ a1

a0
=
a3

a2
. (55)
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In case a0 = 0, the last identities need to be reversed a0

a2
= a1

a3
, a0

a1
= a2

a3
. In these coordinates,

the lowering of indices is denoted by a� = �̃��a
� . For example,

y0 = y3, y1 = −y2, y2 = −y1, y3 = y0. (56)

To understand the connection with the spinors of the representation �̃, which was based
on the complex electromagnetic tensor ℱ , defined by (6) we will present this tensor in Bondi

tetrad. We will denote by ℱ̃ the matrix of ℱ in this representation. By the usual formula of
basis transformation we get

ℱ̃�� = Lℱ��L−1 =
1

2

⎛⎜⎜⎝
F3 F1 − iF2 0 0

F1 + iF2 −F3 0 0
0 0 F3 F1 − iF2

0 0 F1 + iF2 −F3

⎞⎟⎟⎠ =
3∑
j=1

(�̃j)��Fj . (57)

This show that the complex electromagnetic tensor become decomposable in Bondi tetrad. This
tensor has two invariant subspaces M0 = spanℂ{n0,n1} and M1 = spanℂ{n2,n3}.

Claim 8. The representation �̃ of the Lorentz group on Mc introduced in Definition 1 acts as a
spin half representation on each of subspaces M0 = spanℂ{n0,n1} and M1 = spanℂ{n2,n3}

From the decomposition (57) of the complex electromagnetic tensor ℱ̃ , we see that in Bondi
tetrad Majorana-Oppenheimer matrices (�̃j)�� act on each Mk as the the usual Pauli matrices

(�̃j)��Mk = �jMk, with

�1 =

(
0 1
1 0

)
, �2 =

(
0 −i
i 0

)
, �3 =

(
1 0
0 −1

)
. (58)

Generators B̃j of boosts Bj in direction of xj in representation �̃ were defined (Definition 1) by
1
2�
j . So, on the subspaces Mk they will act by �̃(B̃j) = 1

2�
k. Similarly, generators R̃j of rotation

ℜj about the direction xj in representation �̃ were defined by i
2�
j . So, on the subspaces Mk they

will act by �̃(R̃j) = i
2�

k. This identify the subspace Mk with spinors and the representation �̃
with the spin half representation of the Lorentz group on the spinors. This proves the Claim.

The following tensor decomposition can help us to understand the connection between the
representations �̃ and �̃∗. We define a tensor decomposition of a 4×4 matrix as a tensor product
of 2×2 matrices by use of the binary representation of numbers. Each of our indices � = 0, 1, 2, 3
can be considered as a pair of indices (�0, �1) with value in �k ∈ {0, 1} by

0 7−→ 00, 1 7−→ 01, 2 7−→ 10, 3 7−→ 11 .

The tensor decomposition of a two tensor D = Djk is defined by

D = a⊗ b, D�� = D(�0,�1)(�0,�1) = a�0�0 b�1�1 . (59)

For example, the tensor �̃ can be decomposed as �̃ =

(
0 1
−1 0

)
⊗
(

0 1
−1 0

)
:= �̃2 ⊗ �̃2 .

The following properties of the tensor decomposition can be verified directly from the
definition:

a⊗ (b+ c) = (a⊗ b) + (a⊗ c), k(a⊗ b) = (ka)⊗ b = a⊗ kb

and
(a⊗ b)(c⊗ d) = ac⊗ bd, (60)
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where a, b, c, d are 2× 2 matrices and k is a constant.
With this notation,the matrices �j in Bondi tetrad therefore become

(�̃j)�� = I2 ⊗
1

2
�j . (61)

where �j denote the Pauli matrices, and I2 is the 2 × 2 identity matrix. In Bondi tetrad, the
tensor (ℱ∗)�� becomes

(ℱ̃∗)�� = Lℱ∗L−1 =
∑
j

F̄j�
∗
j ⊗ I2 .

and
(˜̄�k)�� = �∗j ⊗ I2 .

This and (60) explain why the representations �̃ and �̃∗ commute.
The connection (22) of the prepotential to the Faraday vector of the field is expressed by

operators �j := �jC. Like the Majorana-Oppenheimer matrices �j , also these matrices satisfy
the canonical anti-commutation relations (12). In the Bondi tetrad, see [10]), the matrices �j

take the usual form of the Dirac’s �-matrices

(
�j 0
0 −�j

)
where �j are the Pauli matrices

(see, for example [5]).
Note that the matrices �j , which define the representation �̃, also satisfy the canonical

anti-commutation relations (12). However, the set �1, �2, �3 cannot be completed by a forth
anticommuting matrix, needed for the Dirac equation. Only after the conjugation they become
Dirac’s �-matrices.
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