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Abstract. More than 100 years ago, Einstein’s special relativity demonstrated that time is a
relative notion. The observed rate of a moving clock differs from the rate of a stationary clock.
In fact, the observed rate depends on the clock’s velocity. All admissible velocities are bounded
by the speed of light. These predictions of special relativity have been verified experimentally
in several different ways. It is natural to ask whether acceleration also influences the observed
rate of a moving clock in addition to the influence due to its velocity. Today, there are several
existing experimental techniques to test whether acceleration influences the observed rate of a
clock. We introduce here an extension of special relativity, which we call extended relativity (ER),
by assuming that acceleration effects the observed rate of a clock. We derive transformations
between uniformly accelerated systems in ER. We show that ER predicts that there is a maximal
acceleration. We obtain relativistic dynamics in ER. We show that Kundig’s 1963 experiment
indicates that acceleration does influence the rate of a clock, supporting the ER model and
providing an estimate for the maximal acceleration. We will present an upcoming experiment
which is designed to test whether acceleration influences the rate of a clock, and to determine
the value of the maximal acceleration. A map for physics under ER will be presented. We will
show how ER handles black-body radiation and some quantum properties of a Hydrogen-like
atom.

1. Introduction

About 400 years ago, Galileo Galilei introduced the Principle of Relativity, which states
that the laws of physics are the same in any inertial system. Let (t,x) denote the space-time
coordinates of an event A in an inertial frame K. It was clear in Galileo’s day that the spatial
coordinate x′ of A in a second inertial frame K ′ will depend on t, x and the relative velocity
v between the K and K ′. But, what about the time component t′ of the event A in K’? At
the time of Galileo, there was no evidence to suggest that t′ ∕= t. Moreover, there was no
mathematical model in Galileo’s day to handle such an assumption. It was therefore assumed
that t′ = t. The ensuing space-time transformations are called Galilean transformations and are
the basis for classical physics.

About 120 years ago, the validity of the Galilean transformations came into question.
The results of the Michelson-Morley experiment could not be explained using the velocity
addition based on Galilean transformations. It was also shown that the Maxwell equations
are not covariant with respect to these transformations, while they are covariant under
different transformations, called the Lorentz transformations. Albert Einstein, based on the
principle of relativity and the constancy of speed of light, developed special relativity in
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which the transformation between inertial systems are Lorentz transformations. Under these
transformations, the observed rate of a moving clock depends on its velocity. This is called the
time dilation of a moving clock.

This raises the following question: “Does the observed rate of a moving clock also depend on
its acceleration?” Currently, it is assumed that acceleration does not influence the observed rate
of the clock. This is called the Clock Hypothesis or Clock Postulate. Till now this assumption
was natural, as there was no physical evidence for this influence and no model to describe it. See
a discussion of this question in article [19] “Does a clock’s acceleration affect its timing rate?”.

By the equivalence principle, gravitation can be interpreted as acceleration. In Einstein’s
General Relativity, gravitational fields are well described by the metric tensor on spacetime.
Time dilation in general relativity is expressed by this metric. However, the time dilation of
a clock due to gravitation cannot be observed, since both standard clocks and processes are
affected in the same way. But, the difference in the time dilation between two different points
could be observed and is called the gravitational redshift, see [33] pp.79-80. In general relativity
the time dilation within an accelerated system with respect to an inertial lab system is assumed
to be the same as in the instantaneous comoving inertial system. For uniformly accelerated
systems, this is a part of the Hypothesis of Locality introduced by Mashhoon [25, 26] and of
the Weak Hypothesis of Locality used in [18]. In these systems, the usual gravitational redshift
occurs.

In this paper, we will show that there is a model for a relativity theory in which the observed
time of a moving clock is also influenced by the acceleration of the clock. We will show that this
theory implies the existence of a maximal acceleration. In special relativity, the time dilation
can be measured by the transverse Doppler shift. Similarly, in this model, the additional time
dilation predicted by this theory could be measured by the additional Doppler shift due to the
acceleration of the clock. We will provide evidence supporting this extension of special relativity
and also provide a numerical estimate of the value of the maximal acceleration. We call our
extension of relativity, in which the observed time depends also on the acceleration, Extended
Relativity (ER). We will describe feasible experiments to test ER and present a new map for
physics under ER. Finally, we will show that some quantum effects can be understood within
the framework of ER.

2. Kinematics of accelerated systems in ER
In this section, we will study accelerated systems within the the framework of Special Relativity.
To study such accelerated systems, A. Einstein introduced the Clock Hypothesis, which states
that the “rate of an accelerated clock is identical to that of the instantaneously comoving inertial
clock.” Not all physicists agree with this hypothesis. L. Brillouin ([6] p.66) wrote that “we do not
know and should not guess what may happen to an accelerated clock.” If we assume the validity
of the Clock hypothesis, then the space-time transformation between accelerated systems are
well known, see [28] and others.

In [14], we presented a systematic approach for transformations between accelerated systems
without assuming the Clock Hypothesis. Our approach to describing transformations between
two uniformly accelerated systems is based on the symmetry which follows from the general
principle of relativity.

2.1. proper velocity - time description of events
The first step for describing transformations between two uniformly accelerated systems is to
introduce a new proper velocity - time description of events. Proper velocity (p-velocity in short)
is defined as

u = 
(v)v =
dr

d�
,
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where v = dr/dt , 
(v) = 1√
1−v2/c2

and � is the proper time of the moving object. The proper

velocity is also the canonically conjugate variable to the position in the relativistic phase-space.
The relativistic acceleration g, which appears in the relativistic dynamic equation, is defined

(see [32] p.71) to be the derivative of p-velocity with respect to time t:

g =
du

dt
. (1)

This acceleration coincides [18] with the acceleration in the comoving frame. Note that if an
object moves with this constant acceleration, then its p-velocity satisfies the equation

d2u

dt2
= 0 . (2)

We will say that an object is uniformly accelerated if its acceleration is constant, or equivalently,
satisfies (2). If the velocity of a uniformly accelerated object is parallel to the acceleration, then
it moves with the well-known hyperbolic motion (see [28], [32] and [9]).

In the p-velocity-time description, an event is described by the time at which the event
occurred and the p-velocity u ∈ R3 of the event. The evolution of an object in a system can be
described by the p-velocity u(t) of the object at time t. The line (t,u(t)) replaces the world-
line of special relativity in this description. To obtain the position of the object at time t, we
have to know the initial position of the object and then integrate its ordinary velocity (which
is readily computed from the p-velocity) with respect to time. The following Table 1 shows the
parallels between the space-time transformations for inertial systems and the p-velocity-time
transformations between uniformly accelerated systems.

Table 1. Parallelism between the space-time transformations for inertial systems and the p-
velocity-time transformations between uniformly accelerated systems.

Systems Relative motion Relative motion eqn. Event descr.

inertial uniform velocity d2r
dt2

= 0 (t, r)

accelerated constant acceleration d2u
dt2

= 0 (t,u)

To obtain the Lorentz transformations in special relativity, it is essential that the relative
position of the origins of the frames connected with the two inertial systems depends linearly on
time. This linear map expresses the relative velocity between the systems. For two uniformly
accelerated systems, if we assume that the systems are comoving, meaning having zero relative
velocity at time t = 0, then the uniform acceleration between the systems, defined by (1), is a
linear map from time to p-velocities.

Let T denote the transformation mapping the time and p-velocity (t, u) of an event in a
uniformly accelerated system Kg to the time and p-velocity (t′, u′) of the same event measured
in the uniformly accelerated system K0. The situation is analogous to that of the space-time
transformations between two inertial systems. In that case, the relative motion of one system
with respect to the other is described by a uniform velocity, which is a linear map from time to
space (or a line in the space-time continuum). For uniformly accelerated systems, the relative
motion of one system with respect to the other is described by a uniform acceleration, which
is a linear map from time to p-velocities (or a line in the p-velocity-time continuum). Since
the space-time transformation between two inertial systems is linear, we will assume that the
p-velocity-time transformation T between two uniformly accelerated systems is also linear. This
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assumption can be also justified by use of relativistic dynamics, as follows. Uniformly accelerated
motion in an inertial system is described by a straight line in the p-velocity-time continuum
and corresponds to a relativistic motion under a constant force. Any straight line in the p-
velocity-time continuum in a uniformly accelerated system corresponds to relativistic motion
under a constant force in this system and in any other uniformly accelerated system. Hence,
the transformation T maps lines to lines and is, therefore, linear.

2.2. General proper velocity - time transformations between accelerated systems
To define the symmetry operator between two uniformly accelerated systems, we will use an
extension of the principle of relativity, which we will call the General Principle of Relativity.
This principle, as formulated by M. Born (see [4], p. 312), states that the “laws of physics
involve only relative positions and motions of bodies. From this it follows that no system of
reference may be favored a priori as the inertial systems were favored in special relativity.” The
principle of relativity from special relativity states that there is no preferred inertial system,
and, therefore, the notion of rest (zero velocity) is a relative notion. From the general principle
of relativity, it follows that there is no preference for inertial (zero acceleration) systems. Hence,
when considering accelerated systems, we no longer give preference to free motion (zero force)
over constant force motion. This makes all uniformly accelerated systems equivalent.

From the general principle of relativity, it is logical to assume that the transformations between
the descriptions of an event in two uniformly accelerated systems depend only on the relative
motion between these systems. Consider now two uniformly accelerated systems Kg and K0,
with a constant acceleration g between them. We choose reference frames in such a way that
the description of relative motion of Kg with respect to K0 coincides with the description of
relative motion of K0 with respect to Kg. The above principle implies that the transformation
T mapping the description of an event in system Kg to the description of the same event in

system K0 will coincide with the transformation T̃ = T−1 from system K0 to Kg. This implies
that T is a symmetry, or T 2 = Id.

The following derivation of the explicit form of the transformations between K0 and Kg

follows [10], where it is done for inertial systems. Similar derivations were obtained by several
authors. The choice of the reference frames is as follows. We choose the origins O of Kg and O′

of K0 of the p-velocity axes to be the same at t = 0. We also synchronize the clocks positioned
at the origins of the frames at time t = 0. We chose the direction of the first p-velocity axis in
each system in such a way that the relative acceleration of the second system will be opposite
to the direction of this axis. The corresponding axis will thus be reversed, as in Figure 1. The
other two axes are chosen to be parallel.

-

6

�
���

�

6

�
���

� u1u′1

u3u′3

u2u′2

g

KgK0 OO′

Figure 1. Symmetric uniformly accelerated systems

Note that with this choice of the axes, the acceleration g ofO′ inKg is equal to the acceleration
of O in K0, and, thus, the p-velocity-time transformation problem is fully symmetric with respect
to Kg and K0. We will denote this transformation by Sg, since it is a symmetry and depends
only on the acceleration g between the systems. By our choice of the p-velocity axes, the systems
are symmetric with respect to the second and third coordinates. We may thus assume u′2 = u2
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and u′3 = u3. For the time and the first p-velocity coordinates, Sg has the form(
t′

u′1

)
= Sg

(
t
u1

)
=

(
S00 S01
S10 S11

)(
t
u1

)
.

The world-line of the origin O in K ′ is (S00t, S10t). From (1), the relative acceleration of
system K with respect to K ′ is g = S10/S00. If we denote 
̃ = S00, we get

Sg = 
̃

(
1 �
g �

)
for some constants �, �. Now, from the symmetry S2

g = I, we have � = −1 and 
̃ = 1√
1+�g

.

Thus,

Sg =
1√

1 + �g

(
1 �
g −1

)
.

Now we have two choices:

∙ If the observed time does not depend on the acceleration, then 
̃ = 1 and � = 0. This is
true if the clock hypothesis is valid. In this case, the p-velocity-time transformations are
Galilean.

∙ If the observed time depends on the acceleration, then 
̃ ∕= 1 and � ∕= 0. This is the
assumption of extended relativity (ER).

To define the p-velocity-time transformations between accelerated systems under ER, it
remains only to define the value of �. To do this, we introduce a metric diag(�2,−1,−1,−1) on
p-velocity-time (t,u). We are looking for a � which will make the symmetry Sg self-adjoint. In
order for Sg to be self-adjoint, we must have(

0
1

)
⋅ Sg

(
1
0

)
=

(
1
0

)
⋅ Sg

(
0
1

)
,

where ⋅ is the product corresponding to our metric. This identity yields −g = �2�. A satisfactory
� exists if � < 0.

With the above choice of �, the self-adjoint symmetry Sg becomes an isometry. This means
that the interval ds̃2 = �2dt2 − ∣du∣2 is conserved under the transformation Sg. Consider a
uniformly accelerated particle whose acceleration a has magnitude ∣a∣ = � in system K. The
interval ds̃2 = 0 in system K, and thus the interval is also zero in system K ′. This implies
that there is a unique acceleration magnitude, � which is conserved between K and K ′. From
the generalized principle of relativity, this unique acceleration magnitude, which we will denote
�(g), can depend only on the magnitude of the relative acceleration g between the accelerated
systems.

The following argument shows that the unique acceleration magnitude �(g) is a universal
constant. Consider three uniformly accelerated systems K,K ′ and K ′′. Assume that the relative
acceleration of K ′ with respect to K is g and that the relative acceleration of K ′′ with respect
to K ′ is also g. From the above argument, an acceleration with magnitude �(g) in K will have
the same magnitude in K ′. Similarly, an acceleration with magnitude �(g) in K ′ will have the
same magnitude in K ′′. Hence, an acceleration with magnitude �(g) in K will have the same
magnitude in K ′′. But, the relative acceleration between K and K ′′ is 2g. Thus, �(g) = �(2g).
Repeating this argument, we see that this unique acceleration magnitude is independent of the
relative acceleration between the systems. Thus, we have shown that in ER (if the observed time
also depends on the acceleration), there is a unique universal acceleration magnitude such that
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any uniform acceleration with this magnitude in one uniformly accelerated system, will have
the same magnitude in any other uniformly accelerated system. We will call it the maximal
acceleration and denote its magnitude by am.

From the above arguments, am = �, which implies that � = −g/a2m. Thus, the proper
velocity-time transformation between two uniformly accelerated systems (for parallel axes, by
replacing our previous u1 with −u1) in ER is

t′ = 
̃(t+ gu1/a
2
m)

u′1 = 
̃(gt+ u1)
u′2 = u2
u′2 = u2,

(3)

with


̃ =
1√

1− g2/a2m
. (4)

This is a Lorentz-type transformation.
The existence of a maximal acceleration for massive objects has already been predicted by

Caianiello, based on the time-energy uncertainty relation in quantum mechanics (see Caianiello
[7], Papini and Wood [30] and Papini et al. [29] and references therein). Note that the
acceleration used by Caianiello is the proper acceleration, defined as g = du/d� and not
g = du/dt, as defined in (1). In ER, the proper acceleration is unbounded, just as the proper
velocity is unbounded. The estimate of the Caianiello maximal acceleration in Scarpetta [31]
is am = 5 ⋅ 1050g, which is too large to have an effect in real physical processes. Boundedness
of the proper acceleration excludes black-holes, since on the surface of a black-hole the proper
acceleration has no bound. But in ER black-holes may exist, see end of next section for the
meaning of the horizon in Schwarzschild universe.

The clock hypothesis has been tested and was found to be valid to great accuracy. See,
for example, the experiment of Bailey J. et al [1] for measurements of the time dilation for
muons. This paper claims that the experiment supports the validity of the clock hypothesis for
accelerations 1018g. But the acceleration mentioned there is the proper acceleration and the
magnitude of our acceleration in this experiment is significantly smaller then the claimed value,
So, this experiment does not contradict the estimate that we will obtain later. For a long time,
B. Mashhoon argued against the Clock Hypothesis and developed nonlocal transformations for
accelerated observers (see the review article [24] and references therein). Our approach treats
the problem differently.

3. Relativistic Dynamics in ER
Relativistic Dynamics in ER is a dynamics extending classical dynamics and preserving two

limitations: the velocity v = dr/dt is bounded by c, and the acceleration g = du/dt is bounded
by am.

To derive the dynamics equations of ER, we will follow [13] and ideas which helped to change
the first order dynamic system in classical mechanics to a corresponding system in special
relativity. A first-order dynamic system in classical mechanics for the motion of an object
of mass m under a force F can be written as{

dx
dt = v
dv
dt = F

m

}
. (5)

Einstein’s relativistic dynamics equation in special relativity is dp
dt = F , or m0

d
(v)v
dt = F ,

where m0 is the rest-mass of the object [8]. Thus, in special relativity the corresponding dynamic
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system is {

 dxdt = u
du
dt = F

m0

}
, (6)

where u is the p-velocity.
In special relativity, the time dilation (due to the velocity) factor 
 enters in the first equation.

Since 
(v(u)) =
√

1 + u2/c2, we can rewrite this system as{
dx
dt = u√

1+u2/c2

du
dt = F

m0

}
.

Note that the first equation ensures that the magnitude of the velocity dx
dt during the evolution

does not exceed c, as required in special relativity.
For the corresponding system in ER, in order to preserve the limitation of the acceleration

du/dt by am, we introduce the time dilation (due to the acceleration) factor 
̃, defined by (4),
in the second equation. This leads to {


 dxdt = u


̃ dudt = F
m0

}
.

As above, we can rewrite this system as⎧⎨⎩
dx
dt = u√

1+∣u∣2/c2
du
dt = F√

m2
0+∣F∣2/a2m

⎫⎬⎭ . (7)

We will call this system the relativistic dynamics equation in ER.
The classical Hamiltonian for motion under a conserved force F (x) with potential V (x) is

Hcl(x, p) = p2

2m + V (x), where x is the object’s position, and p = mv is the object’s momentum.
The Hamiltonian is the energy of an object, written as a function on the phase space (x, p), and
remains constant throughout the motion. We will change the phase space to (x, v), where v is
the velocity of the object and change the Hamiltonian to energy per unit mass:

Hcl(x, v) =
v2

2
+ V (x) =

∫ v

0
udu−

∫ x

0
a(y)dy , (8)

where V (x) is now the potential per unit mass, and a(x) = F (x)/m is the acceleration at the
point x. Note that the first integral, which represents the kinetic energy, depends on the velocity,
while the second integral, which represents the potential energy, depends on a similar way on the
acceleration. Under this modification, we can rewrite the system (5) as a Hamiltonian system{

dx
dt = ∂Hcl

∂u
du
dt = −∂Hcl

∂x .

}
. (9)

Note that this Hamiltonian system is symmetric in x and u, as required by Born Reciprocity [5],
which states that the “laws of nature are symmetrical with regard to space and momentum.”

The symmetry becomes even more explicit in the case of the classical harmonic oscillator.
For analysis of the harmonic oscillator, we use an inertial frame in which the attractive center
is placed at rest at the origin. In this frame, the acceleration is a(x) = − k

mx. The motion of

the oscillator is characterized by the natural frequency of the oscillator, defined as ! =
√

k
m .
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Substituting this into equation (8), we obtain the Hamiltonian for the classical harmonic
oscillator:

Hcl(x, u) =
u2

2
+

(!x)2

2
=

∫ u

0
vdv +

∫ !x

0
ydy . (10)

Note that both the kinetic energy and the potential energy are quadratic expressions in the
variables u and !x, respectively. Such expressions are natural in classical mechanics, which uses
Euclidean geometry.

In special relativity, we have two candidates for the velocity component of the classical phase
space: the usual velocity v = dx/dt and the proper velocity u = 
(v)v. System (6) suggests using
a phase space of (x, u), position and p-velocity. The Lagrangian formulation [20] of relativistic
dynamics also implies that the canonical momentum in special relativity is p = m0u and, for
unit mass, should be u. Relativistic dynamics replaces the first term in (8) by the Einstein
formula for the kinetic energy Ek = mc2 = m0c

2
. Thus, using the connection between v and
u, the Hamiltonian per unit rest-mass in special relativity is

Hsr(x, u) = c2
(v(u)) + V (x) = c2
√

1 +
u2

c2
+ V (x). (11)

This Hamiltonian reproduces the dynamics equation (6) and can be derived from the relativistic
Lagrangian.

Note that this Hamiltonian breaks the symmetry in x and u. This can be seen explicitly for
the harmonic oscillator. The Hamiltonian for the harmonic oscillator in special relativity is

Hsr(x, u) = c2
√

1 +
u2

c2
+
!2x2

2
. (12)

The kinetic energy Ek is now expressed by a hyperbola
E2

k
c4
− u2

c2
= 1 , which is natural for special

relativity, which uses hyperbolic geometry. The asymptotes of this hyperbola are Ek = cu for
u → ∞ and Ek = −cu for u → −∞. Nevertheless, the second term (the potential energy) is
still a parabola, as in the classical case.

The broken symmetry and Born reciprocity is restored by the relativistic dynamics in ER.
The relativistic dynamics equation (7) in ER suggests the following Hamiltonian:

Her(x,u) = c2
√

1 + ∣u∣2/c2 + U(x), (13)

with

a(t) =
du

dt
= −∂U(x)

∂xj
=

Fj(x)√
1 + ∣F(x)∣2/(mam)2

. (14)

For the harmonic oscillator, the Hamiltonian becomes

Her(x, u) = c2
√

1 +
u2

c2
+
a2m
!2

√
1 +

!4x2

a2m
. (15)

This Hamiltonian has the same type of Born Reciprocity as in (10) for the classical harmonic
oscillator. Note that the minimal energy of an oscillator E0 = m0(c

2 + a2m/!
2) is chosen to

be non-zero, in order to have a well-defined behavior at infinity for both kinetic and potential
energies.

The relativistic dynamics equation (7) in ER can be rewritten as the usual Hamilton system:{
dx
dt = ∂Her

∂u
du
dt = −∂Her

∂x

}
. (16)
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The solutions of equation (7) automatically satisfy the two limitations: the velocity v = dr/dt
is bounded by c, and the acceleration g = du/dt is bounded by am. The classical mechanics
dynamics is obtained from this equation when c→∞ and am →∞, while the special relativity
dynamics is obtained from this equation when am →∞.

If the mass of the moving object is positive, then its acceleration magnitude ∣a∣ is strictly less
then am. On the other hand, any zero-mass particle, like a photon, accelerates with the maximal
acceleration am. Note that in special relativity, a zero-mass particle has infinite acceleration, if
this acceleration is defined properly [18]. This implies that the electromagnetic radiation which
is generated by zero-mass particles is described in the p-velocity-time continuum by plane waves
f(!t− k̃u), with ∣k̃∣/! = 1/am.

Consider now the freely falling object in a gravitational field outside a spherically symmetric
mass M . If we use the classical description of the gravitation, the acceleration g due to the
gravitation will be g = GM/r2, where r is the distance from the object to the center of the mass
M . So, from (7) the dynamics equation for a freely falling object in ER will be

du

dt
=

g√
1 + g2/a2m

.

In the Schwarzschild universe, the acceleration generated by the gravitation force is g̃ =
g/
√

1− 2gr/c2, see [32] p.230. So, from (7) the ER dynamics equation of a freely falling object
in Schwarzschild universe is

du

dt
=

g̃√
1 + g̃2/a2m

=
g√

∣1− 2gr/c2∣+ g2/a2m
.

This means that at the usual horizon r = 2GM/c2 = c2/(2g) of this model, the magnitude of
the acceleration is am, and 
̃, defined by (4), is infinite, implying that time stops at this horizon.
As mentioned earlier, any massive object cannot reach the maximal acceleration in Minkowski
space. But in the Schwarzschild universe each object at the horizon becomes light-like.

The largest accelerations observed in astronomy are the accelerations on neutron stars, where
the acceleration is of order 1012m/s2. Since the ER correction of the dynamics is of order
g2/a2m ≤ 10−14 it will be hard to observe this correction in astronomy.

4. Testing Maximal Acceleration
4.1. Doppler type shift for an accelerated source
Extended relativity predicts an additional longitudinal Doppler shift of a source accelerating
in the direction of the radiation. The observation of such a shift can be used to test extended
relativity and to determine the value of the maximal acceleration.

Consider a source radiating at frequency ! with a “wave vector” k̃ in the x-direction. We want
to determine the frequency !′ of this radiation as observed in a system moving with acceleration
g in the x-direction with respect to the source. By use of the p-velocity-time transformation (3)
between these systems, we get

f(!t− k̃u) = f

(
!
̃(t′ +

gu′

a2m
)− k̃
̃(gt′ + u′)

)
= f(!′t′ − k̃′u′).

Thus,

!′ = 
̃(! − k̃g) = !
1− ∣k̃∣! g√

1− g2

a2m

= !
1− g

am√
1− g2

a2m

.

If g
am
≪ 1, we get

!′ = !

(
1− g

am

)
. (17)
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4.2. Kündig’s experiment
After the discovery of the Mössbauer effect in 1958, quantitative measurements of relativistic

time dilation were carried out in the 1960s based on this effect. The experiments reported
full agreement with the time dilation predicted by Einstein’s theory of relativity. In these
experiments, the Mössbauer source was placed at the center of a fast rotating disk, and an
absorber was placed at the rim of the disk. In the analyses of these experiments, it was assumed
that the absorption line of the rotating absorber stays the same as at rest, and is only shifted
by the time dilation factor. As it was shown in [15], this assumption is wrong.

Kündig’s experiment (1963) [22] measured the transverse Doppler shift for a rotating disk by
means of the Mössbauer effect, see Figure 2. In (only) this experiment, the absorption line of the

MS A
D

vA

aA

Figure 2. The rotating disk of the Kündig’s experiment

rotating absorber was obtained by putting the source on a transducer. Thus, currently, Kündig’s
experiment is the only proper experiment to measure the transverse second order Doppler shift
by Mössbauer spectroscopy using a rotating absorber.

For this experiment, Special relativity predicts a transverse Doppler effect of the value due

to the time dilation of the absorber △EE ≈ −
R2!2

2c2
= −bR2!2

2c2
. The same value was obtained by

Kündig analyzing the problem in the frame attached to the rotating disk and the accelerated
absorber and treating the problem by the principle of equivalence and the general theory of
relativity. The centrifugal force acting on the absorber is interpreted as a gravitational force
with the potential Φ = −1

2R
2
A!

2. The time of the absorber is slowed down by the gravitational
potential in this analysis. Kündig in [22] claimed that the observed value of b = 1.0065± 0.011,
which is in full agreement with special relativity’s prediction.

But Kholmetskii et al (2008) [21] found an error in the data processing of the results of
Kündig’s experiment. After the correction of the error, the correct value in this experiment is
b = 1.192 ± 0.03. Since the accuracy in the experiment was about 1%, this shows a significant
deviation from special relativity’s prediction. But, as we see from Figure 2, in this experiment
there is also an acceleration between the source and the absorber. In [11], this deviation was
explained by use of the additional longtitudal Doppler shift (17) due to the acceleration between
the source and the absorber.

In Kündig’s experiment, the acceleration a = R!2 toward the source and R = 9.3cm. Hence,

the additional shift with respect to that predicted by special relativity is 2c2

amR
≈ 0.192 This gives

an approximate value of am = 1021 cm
s2

for the maximal acceleration. Notice that the calculated
value of b is independent of the speed of rotation. This agrees approximately with the data in
[21].

These observations lead us to the following conclusions:

∙ The observed rate of a clock also depends on the acceleration of the clock.
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∙ The correcting time dilation, due to the acceleration, defines the value of the maximal
acceleration to be am ≈ 1021 cm

s2
.

∙ The value of the maximal acceleration is independent of the rotational velocity.

Note that Kholmetskii’s correction of the result of the experiment can be interpreted as a
change of the gravitational potential Φ = −1

2R
2
A!

2 in the the frame attached to the disk to

Φ̃ = −1
2R

2
A!

2(1 + c2!2/a2m).

4.3. Future tests of maximal acceleration
An experiment is currently in process by the author and research teams from Hebrew University
and Ben-Gurion University in Israel for testing ER and determining the value of the maximal
acceleration. In the experiment, a Mössbauer source MS will be mounted, as usual, on a
transducer. A semicircular absorberA will be placed on a disk of radius about 6 cm. The detector
D will be diametrically opposed to the source, as shown in the Figure 3. Two collimators C will
be placed between the source and the detector restricting the width of the measured radiation
ray and insuring that the center of the disk is in this ray. The disk with the absorber will be
rotated with a high-speed vibrationless spindle with several angular velocities !, ranging up to
60,000 rpm. We will separate the counting of the detector for the times when the acceleration
of the absorber is in the direction of the radiation, as in case (a) of Figure 3, and the times
when the acceleration of the absorber is opposing the direction of the radiation, as in case (b)
of Figure 3. Two absorption curves will be obtained for each case.

MS

A
D

vA

aA
x aA

A

c

MS
D

vA

x

A

c

(a) (b)

cc
aA

Figure 3. The proposed experiment, two positions of the absorber.

The radiation from the source MS undergoes two shifts, one due to the known transversal
Doppler shift, and an expected second shift due to the acceleration of the absorber. The first
shift should be the same for both cases, while the second shift changes sign from case (a) to (b).
If the Clock Hypothesis is valid, no shift between the two absorption curves should be observed.
On the other hand, if such a shift is observed and is significant, it will prove that the acceleration
influences the observed rate of the clock and provide support for the validity of ER. Moreover,
this experiment will enable us to calculate the value of the maximal acceleration.

Following is a list of other possible tests of ER and the maximal acceleration:

(i) Additional testing the Doppler shift due to the acceleration of a rotating disk by means of
the Mössbauer effect

(ii) Muon-life experiment- improved (Bailey 77)- testing time dilation due to acceleration
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(iii) Tests of the relativistic ER dynamics - Synchrotron

(iv) Tests of the relativistic ER dynamics by particle scattering

(v) Short-pulse laser acceleration-testing Doppler shift due to acceleration

(vi) Theoretical prediction of Quantum Mechanical effects based on ER

5. Extended relativity modification of physics
Extended relativity and the existence of a maximal acceleration change the entire map of
physics. With the development of Einstein’s theory of relativity and the development of quantum
mechanics, the map of physics of the 20th century looks as follows. The areas of physics are
determined by the magnitude of their velocities with respect to the maximal velocity (the speed
of light c) and by their size. Classical mechanics is valid for large-sized objects and velocities
significantly smaller than the speed of light. Relativistic dynamics is for large objects with
speeds close to the speed of light. Quantum mechanics (non-relativistic) deals with small-sized
objects with velocities significantly smaller than the speed of light, see Figure 4.

vc

Classical
 Mechanics

Quantum 
Mechanics

Relativistic 
Dynamics

Quantum 
Fields

10-9 m

0

Map of Physics at 20th century

v

am

c

Classical
Mechanics

Quantum Mechanics

R
elativistic D

ynam
ics

EM

Proposed ER Map of Physics 

0

Thermodynamics

Figure 4. Two maps for physics

If the forthcoming experiments prove the validity of ER and the maximal acceleration turns
out to be of the order of our current estimate, then the map of physics will need to be changed.
First, we suggest to replace the size axis in the map by the acceleration. This will define a
bounded domain of all ER admissible velocities and accelerations. This domain is the tangent
domain to the relativistic phase-space. Classical mechanics is valid for both velocities and
accelerations which are far from their maximal values. Relativistic dynamics is valid for velocities
close to the speed of light and accelerations which are far from the maximal acceleration.

Quantum mechanics is not a model for small-sized objects, but for systems with accelerations
close to the maximal one. For example, to describe the motion of electrons (small-sized objects)
in a synchrotron, relativistic dynamics is used, and not quantum mechanics, since the velocities
are close to the speed of light. On the other hand, the accelerations in the quantum region are
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extremely high. In [13] we asked “Can ER incorporate quantum phenomena?” Some partial
results will be presented in Subsection 5.2.

Thermodynamics in this map is positioned between classical and quantum mechanics.
Obviously, the velocity of thermal vibrations is far from the speed of light. Because of the
high frequency of these oscillations, their acceleration can get very large. Indeed, for vibrations
with small values of the natural frequency !, the classical model describes well the radiation
curves. But for large !, only by assuming Planck’s hypothesis, can one obtain the experimentally
derived radiation curves. Note also that this hypothesis plays an important role for quantum
mechanics. In the next subsections, we show that ER can explain the differences in thermal
vibrations for small and large frequencies. Moreover, in this model, there is no “ultra-violet
catastrophe” ([3] p.255).

Finally, electromagnetic fields (EM) are composed of photons which are zero-mass particles.
As explained at the end of Section 3, in ER such particles move with maximal acceleration
and reach velocities close to the speed of light in a very short time after emission. Thus, we
positioned electromagnetism in the corner of our domain.

5.1. Quantum-like behavior of the harmonic oscillator in extended relativity
Following [12], we will describe now the motion of the harmonic oscillator in ER. The ER
dynamic system for the harmonic oscillator is⎧⎨⎩

dx
dt = u√

1+∣u∣2/c2
du
dt = !2x√

1+!4x2

a2m

⎫⎬⎭ . (18)

The Hamiltonian of this oscillator was given in (15). The effective potential energy

Veff = a2m
!2

√
1 + !4x2

a2m
is now expressed by a hyperbola

V 2
eff

�4 − (!x)2

�2 = 1 , with � = am/!.

The asymptotes of this hyperbola are V = amx for x→∞ and V = −amx for x→ −∞ and are
independent of the natural frequency ! of the harmonic oscillator. We normalized the potential
to have the same limit at infinity and not by setting the value to zero when x = 0, as it is
done for the classical harmonic oscillator. The value Veff (0) = a2m/!

2 of the potential at the
origin tends to zero as ! becomes extremely large, as shown in Figure 5. This will happen in

 x[cm]

V(x)

[erg]

(a)

(b)

(c)

(d)

(e)

-4. ´ 10-9
-2. ´ 10-9 2. ´ 10-9 4. ´ 10-9

1 ´ 1012

2 ´ 1012

3 ´ 1012

4 ´ 1012

5 ´ 1012

6 ´ 1012

Figure 5. Effective potential Veff (x) for different ! :
(a)5 ⋅ 1014s−1, (b)6 ⋅ 1014s−1,(c)8 ⋅ 1014s−1,(d)11 ⋅ 1014s−1, (e)40 ⋅ 1014s−1

the quantum region, where the ratio between the forces acting on the particles to their masses
is extremely large.

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012017 doi:10.1088/1742-6596/437/1/012017

13



From the Taylor expansion of Veff , we see that if !4x2/a2m ≪ 1, then Veff ≈ !2x2

2 + const.
This is the classical potential (per unit mass) for the harmonic oscillator. When !4x2/a2m ≫ 1,
on the other hand, which occurs for extremely large !, the potential energy of an ER harmonic
oscillator is approximately

Vq(x) ≈ am∣x∣ , (19)

where the subscript q means “quantum.”
We will solve first the evolution equation of the ER harmonic oscillator with this potential.

Let A denote the amplitude of the vibrations. Assume that at time t = 0, the position of the
oscillator was at x(0) = −A. At this time, the velocity was u(0) = 0. Denoting the total energy
by E, the free energy is

E − E0 = m0Vq(x(0)) = m0amA . (20)

To solve the evolution of motion with potential Vq(x), we start with the second equation of
(18):

a(t) =
du

dt
= −∂H

∂x
= −∂Vq

∂x
=

{
am, x < 0;
−am, x > 0.

(21)

Thus, the acceleration a(t) is a square wave, as shown in Figure 6. We interpret a(t) as a
digitization of the standard acceleration signal of the classical harmonic oscillator.

a(t)

[cm/sec^2]

 t[sec]

1. ´ 10-15 2. ´ 10-15 3. ´ 10-15 4. ´ 10-15 5. ´ 10-15 6. ´ 10-15

-1 ´ 1021

-5 ´ 1020

5 ´ 1020

1 ´ 1021

Figure 6. Square wave a(t) for A = 10−9cm

Note that this curve differs significantly from the acceleration curve of the classical harmonic
oscillator. Since the radiation of the oscillating charge depends on its acceleration, the radiation
in our model for extremely large ! will differ significantly from the radiation of a classical
harmonic oscillator charge.

Equation (21) implies that u(t) = amt+ u0 for x(t) < 0, and u(t) = −amt+ u0 for x(t) > 0.
After time 1

4T , which is one fourth of the period T , the position of the oscillator will be

x(14T ) = 0. During the time interval [0, 14T ], the proper velocity is u(t) = amt. Similarly,

on the interval [14T,
3
4T ], the proper velocity is u(t) = am(12T − t). Figure 7 shows the function

u(t), which is called a triangle wave.
It is known (see for example: http://mathworld.wolfram.com /FourierSeriesTriangleWave)

that the Fourier Series of a triangle wave u(t) is

u(t) =
2amT

�2

∞∑
k=0

(−1)k

(2k + 1)2
sin

(
2�(2k + 1)t

T

)
. (22)

We will call the frequency of the leading term in this decomposition the effective frequency and
denote it by !e. Thus

!e =
2�

T
, (23)
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u(t)

[cm/sec]

 t [sec]

1. ´ 10-15 2. ´ 10-15 3. ´ 10-15 4. ´ 10-15 5. ´ 10-15 6. ´ 10-15

-1.5 ´ 106

-1.0 ´ 106

-500 000

500 000

1.0 ´ 106

1.5 ´ 106

Figure 7. Triangle wave u(t) for A = 10−9cm

and we can rewrite (22) as

u(t) =
4am
�!e

∞∑
k=0

(−1)k

(2k + 1)2
sin ((2k + 1)!et) . (24)

For the acceleration, one gets:

a(t) =
du(t)

dt
=

4am
�

∞∑
k=0

(−1)k

(2k + 1)
cos ((2k + 1)!et) . (25)

This shows that the spectrum of these waves is supported at the points !e(2k + 1), for
k = 0, 1, 2, . . .. This is similar to the spectrum of the quantum harmonic oscillator, which
is known to be ℏ!

2 (2k + 1), see [23] p.186. This indicates the connection of this new type of
motion with the motion of the harmonic oscillator in the quantum region.

We use now the first Hamiltonian equation (9), which is also valid in ER, to calculate the
displacement x(t) during the time interval [0, 14T ]:

dx

dt
=
∂H

∂u
=

u(t)√
1 + u(t)2/c2

=
amt√

1 + (amt)2/c2
. (26)

Integrating this equation, we get x(t) = c2

am

(√
1 + (amt)2

c2
− 1

)
−A.

Note that this graph is close to the displacement of the classical harmonic oscillator. This
is due to the fact that the velocities are well below the speed of light and, therefore, x(t)
approximately equals to the integral of u(t). From (24), we remark that the contributions of the
non-leading terms in the Fourier decomposition will be relatively small.

Substituting x(14T ) = 0, we get A = c2

am

(√
1 + (amT )2

16c2
− 1

)
. From this, we can calculate the

period T of oscillations:

T 2 = 16
A2

c2
+ 32

A

am
. (27)

The following Table 2 summarizes the behavior of the ER harmonic oscillator in the classical
and quantum regions.

Note that the period T of the ER harmonic oscillator in the quantum region depends on
the amplitude A of the motion and not on the natural frequency ! of the oscillator. This is in
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Table 2. ER harmonic oscillator in two regions

ER oscillator. classical region quantum region

a(t) A!2 cos!t square wave (Figure 6)
u(t) A! sin!t triangle wave (Figure 7)
x(t) −A cos!t Figure 4

T 2�/!
√

16A
2

c2
+ 32 A

am

E − E0 m0A
2!2/2 m0Aam

spectrum {!} 2�
T (2k + 1) : k = 0, 1, 2, 3...

contrast to the classical region, where T depends on ! and not on A. The period T can also be
expressed in terms of the free energy by substituting A = (E − E0)/(m0am).

There is a difference in the energy spectrum of the quantum oscillator and the spectrum
of the ER harmonic oscillator. The basic energy quanta in the quantum harmonic oscillator
depend on the natural frequency of the corresponding classical harmonic oscillator. This makes
it difficult to explain the fact that the blackbody spectrum is independent of the materials of
which the walls are composed ([2] p. 20). On the other hand, the quanta of radiation of the ER
harmonic oscillator depend only on the energy, which depends, in turn, on the temperature.

We have shown that the ER harmonic oscillator exhibits two significantly different behaviors.
When ! is small, the oscillator behaves classically, while for large values of !, the behavior
is quantum-like. In the classical area, the spectrum of position, velocity, and acceleration
oscillations consists of a single point !, an inherent parameter of the oscillator. In the quantum
area, on the other hand, the spectrum is similar to the spectrum of the energy of a quantum
harmonic oscillator. In the border area, the classical signals become digitized. In Figure 8, we
see the transition of the acceleration a(t) from the classical to the quantum region.

 t[sec]

a(t)

[cm/sec^2]

(a)(b)

(c)

(d)

1. ´ 10-15 2. ´ 10-15 3. ´ 10-15 4. ´ 10-15 5. ´ 10-15 6. ´ 10-15

-1 ´ 1021

-5 ´ 1020

5 ´ 1020

1 ´ 1021

Figure 8. Evolution of a(t) from the classical to the quantum region for ! : (a) 7 ⋅ 1014s−1,(b)
9 ⋅ 1014s−1, (c) 15 ⋅ 1014s−1, (d) 30 ⋅ 1014s−1

Figure 9 features the transition of the velocity u(t) from the classical to the quantum region.
In Figure 10 we show the effective oscillation frequency !e as a function of the natural

oscillator frequency ! =
√
k/m for oscillations with amplitude A = 10−9cm. For the classical

harmonic oscillator !e = !, while for the ER harmonic oscillator this identity holds for small !,
while for large !, !e approaches some limiting frequency, which could be calculated from (23)
and (27).
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 u(t)

[cm/sec]

 t[sec]

(a)

(b)

(c)
(d)

1. ´ 10-15 2. ´ 10-15 3. ´ 10-15 4. ´ 10-15 5. ´ 10-15 6. ´ 10-15

-1 ´ 106

-500 000

500 000

1 ´ 106

Figure 9. Evolution of u(t) from the classical to the quantum region for ! : (a) 7 ⋅ 1014s−1,(b)
9 ⋅ 1014s−1, (c) 15 ⋅ 1014s−1, (d) 30 ⋅ 1014s−1

 

ωe[1/s] 

ω[1/s] 

1x1015 
2x1015 3x1015 

1x1015 

2x1015 

3x1015 

Cl 

ER 
Limit 

Figure 10. The effective oscillation frequency !e and the natural oscillator frequency ! for
classical and ER harmonic oscillators

For an oscillator with a given !, the signal will become digitized as the energy increases, which
can be expressed by an increase of the amplitude A. In Figure 11, we show the transition of the
acceleration a(t) from the classical to the quantum region for an oscillator with ! = 1015s−1, as
the amplitude increases.

To understand the transition between the classical and quantum regions of the ER harmonic
oscillator, we will compare it with the classical harmonic oscillator, as shown in Figure 12.
We observe how gradually the signal gets digitized and the effective frequency !e of the ER
harmonic oscillator becomes smaller than the corresponding frequency ! of the classical harmonic
oscillator.

Since thermal vibrations can be represented as harmonic oscillators, the results of this paper
may have applications to blackbody radiation. Blackbody radiation curves split into two regions:
a classical region, corresponding to small values of !, and a second region, in which ! is large.
Note also that for large !, the distances between the spectrum lines of the ER harmonic
oscillator are an integer multiple of a constant. This is reminiscent of Planck’s assumption.
Since Relativistic Dynamics (am = ∞) does not predict different behaviors for different values
of !, our results provide more support, both to our conjecture that there exists a maximal
acceleration am, and to our estimated value of am.
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(a)

(b)

(c)

(d)

1. ´ 10-15 2. ´ 10-15 3. ´ 10-15 4. ´ 10-15 5. ´ 10-15 6. ´ 10-15time@secD

-1 ´ 1021

-5 ´ 1020

5 ´ 1020

1 ´ 1021

acceleration @cm�sec2D

Figure 11. Evolution of a(t) from the classical to the quantum region for ! = 1015s−1 and
amplitude A: (a) 10−10cm,(b) 10−9cm, (c) 5 ⋅ 10−9cm, (d) 10−8cm.

 

 

(a) 

(b) 

(c) 

Figure 12. Velocity u(t) for classical and ER harmonic oscillators for (a) ! = 1015, (b)
! = 2 ⋅ 1015 and (c) ! = 4 ⋅ 1015

Thus far, we have considered vibrations of the harmonic oscillator in ER without introducing
radiation. In reality, when we consider thermal vibrations of atoms in a solid, the atom has to
be considered positively charged moving in a negatively charged surrounding. In this case, the
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accelerated charged atom will radiate. The Abraham-Lorentz force caused by radiation is given

by Frad = 2
3
q2

c3
ȧ. Thus, if the harmonic oscillator is in the quantum region, which is the usual

state for high temperatures, most of the time the atom will not radiate, since the ∣a(t)∣ = am.
The radiation will be strong for the time when the acceleration changes the direction, which is
the equilibrium position. So, the radiation will come in spikes. After each spike the oscillator
will lose its energy, which implies that the following spike will be of a lower intensity and less
sharp. This can be understood from Figure 11. In order to obtain blackbody radiation curves,
we plan to continue the study of the electromagnetic radiation of the ER harmonic oscillator.

5.2. ER dynamics Hydrogen atom model
Here we present the results published in [16] Consider a system of two particles, a proton with
mass mp = 1.7 ⋅ 10−27kg and an electron with mass me = 9 ⋅ 10−31kg. Denote the position
and the proper velocity of the proton by rp,up and of the electron by re,ue. At this point, we
will restrict ourselves only to the Coulomb force, ignoring the interaction of the particles with
the fields. The force of the proton acting on the electron is thus F1 = k(rp − re)/∣rp − re∣3,
with k = 2.3 ⋅ 10−28Nm2, while the electric force of the electron acting on the proton is
F2 = k(re − rp)/∣re − rp∣3 = −F1.

Typical distances between the proton and the electron are of order 0.5A = 0.5 ⋅ 10−10m. For
both the proton and the electron, we have∣∣∣∣ F2

ammp

∣∣∣∣2 ≈ 35≫ 1,

∣∣∣∣ F1

amme

∣∣∣∣2 ≈ 108 ≫ 1. (28)

Thus, the second equation of system (7) for both particles becomes

dup
dt
≈ am

re − rp
∣re − rp∣

,
due
dt
≈ am

rp − re
∣rp − re∣

, (29)

which implies that the magnitude of the acceleration of each particle will be close to the maximal
one.

To estimate the velocities of the particles, we can use the connection of the acceleration
and the velocity in circular motion. Since, in this case, v2 = aR, in our system we will have
v ≈ 104.5m/s ≪ c. Thus, in the first equation of system (7), we can ignore the denominator,
and this equation becomes u ≈ dr/dt. Substituting this into the second equation, we get an
approximation of the ER dynamics equation for the particles in a hydrogen-like atom:

d2rp
dt2
≈ am

re − rp
∣re − rp∣

,
d2re
dt2
≈ am

rp − re
∣rp − re∣

. (30)

As usual for a two-body problem, in order to solve the system (30) of two particles, we
decompose their motion into the motion of a “center of mass” and the motion of each particle
with respect to the “center of mass.” For our system, the average of these two equations gives

d2(rp + re)/2

dt2
≈ 0. (31)

This implies that the point R := (rp + re)/2 moves freely, as a “center of mass.” Thus, in this
model, the definition of the “center of mass” differs from the definition in classical mechanics.

In a classical model for a hydrogen-like atom, the center of mass is positioned at or close to the
proton, and the electron moves around the more or less stationary proton. Hence, classically,
there should be a significant magnetic field for the atom. In our model, however, both the
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electron and the proton move around the the new “center” with similar trajectories. They thus
produce the same magnetic field, but of opposite signs, due to their opposite charges. Thus, the
total magnetic moment of our atom will be almost zero.

We introduce r = (rp − re)/2, so that rp = R + r and re = R − r. Subtracting the second
equation of (30) from the first and dividing by 2, we obtain

d2r

dt2
≈ −am

r

∣r∣
, (32)

which we call the “radial equation” describing the relative motion of the particles with respect
to the center of mass. This is a typical equation for motion in a central field and can be solved
by known methods. We will solve this equation by the method of [27], Chapter 14.

The solution of equation (32) is in a stable plane generated by the initial vectors r(0), ṙ(0).
Without loss of generality, we may assume that this plane is the x, y-plane. We complexify this
plane by identifying the point (x, y) with the complex number � = x+ iy = r(t)ei'(t). With this
notation, r

∣r∣ = ei'(t), and equation (32) becomes

r̈ei' + 2iṙ'̇ei' + i'̈rei' − r'̇2ei' = −amei'.

Dividing by ei', we have
r̈ + 2iṙ'̇+ i'̈r − r'̇2 = −am. (33)

The imaginary part of this equation is

2ṙ'̇+ '̈r = 0 ⇒ d

dt
(r2'̇) = 0,

implying that the angular momentum r2'̇ in the center of mass system is conserved. Denote
the angular momentum, defined from the initial conditions, by c1. Then, the equation

'̇ = c1/r
2 (34)

uniquely defines '(t) if we solve first the equation for r(t) and use the initial conditions.

To find r(t), substitute (34) into the real part of equation (33) to get r̈ − c21
r3

+ am = 0 .
Multiplying this equation by 2ṙ and integrating by t, we get

ṙ2 = c2 − c21r−2 − 2amr,

with c2 defined by the initial conditions. This equation shows that the radial part can be
regarded as motion in one dimension in an effective field

Ueff =
c21m

2r2
−mamr,

where
c21m
2r2

is called the centrifugal energy, and U(r) = mamr is the potential energy.
Since

ṙ = ±
√
c2 − c21r−2 − 2amr, (35)

in order that solutions will exist, the values of r must be restricted by

c2r
2 − c21 + 2amr

3 ≥ 0. (36)
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The solutions of this inequality are r1 < r < r2, where r1 and r2 are the two positive roots of
the cubic polynomial in (36), which always exist since this polynomial is negative at 0, negative
towards ∞, and has at least one non-negative value at the initial state.

Thus, the solutions of the radial equation (32) of Extended Relativistic Dynamics for a
hydrogen-like atom are obtained by solving the first-order differential equation (35) and then
(34). It is known that only for central fields with potential energy proportional to r2 or 1/r all
finite motions take place in closed paths. The classical electromagnetic field is of this type, but
under our dynamics, U(r) = mamr is not. Hence, in general, our solution oscillates between the
two radial values r1 and r2 and is not a closed path, see Figure 13. We can get a circular path

Figure 13. Electron and proton trajectories in ER dynamics Hydrogen like atom

at the minimum of the effective potential r = 3
√
c21/am, corresponding to the initial velocity

v =
√
ram, when the velocity is perpendicular to r. For certain discrete values, we can get

closed path after n periods.
The frequency of these oscillations can be estimated from the fact that the magnitude of the

acceleration is approximately am, and in approximately circular motion, we have a = R!2. These
considerations yield a frequency of � ≈ 1014s−1. This implies that during one measurement time,
the particle will cover a whole area in the annulus r1 < r < r2.

6. Summary and Discussion
Based on the symmetry following from the general principle of relativity, we have shown in
Section 2 that if the observed time of an accelerated clock differs from the observed rate of a
comoving inertial clock, then there is a universal maximal acceleration, which we denote by am.
A relativity theory in which the observed time depends also directly on the acceleration we call
Extended Relativity ER. We presented a systematic approach for transformations between
two uniformly accelerated systems in ER. These transformations (3) are of Lorentz type. In
Section 3 we presented an ER dynamics equation (7) which is an extension of the relativistic
dynamics and in which all admissible solutions have a speed bounded by c, the speed of light, and
an acceleration bounded by am, the maximal acceleration. We also obtained an ER Hamiltonian
(13).
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In Section 4, based on the results of the previous section, we have shown that ER predicts an
additional Doppler shift due to the acceleration. We have shown that in Kündig’s experiment
(1963), which is the only proper experiment which measured time dilation by Mössbauer
spectroscopy using a rotating absorber, this additional Doppler shift was observed. We described
feasible experiments to test ER and to measure the value of the maximal acceleration.

An ER map for physics is proposed in Section 5. Extended relativity may provide a unifying
framework for physics. It may also provide a new model for thermodynamics and quantum
mechanics. We have shown that in ER, the harmonic oscillator has different behavior for different
energies. For low energies its behavior is classical, while for high energies its behavior becomes
quantum-like. Such energies do occur in thermal vibrations. In this model there is no “ultra-
violet catastrophe.” The model explains photon creation in thermal vibrations. For a hydrogen-
like atom, we have shown that the classical electromagnetic force would generate accelerations
above the maximal one. Thus, at the quantum level, ER dynamics differs significantly from
relativistic dynamics. We obtained the first approximation of the solution for such systems,
ignoring the interaction of the particles with the field. In a typical time that can be measured,
the particle covers a whole area. This may provide an indication of the probabilistic description of
particles in Quantum Mechanics. We have shown that in our model, the expression for the center
of mass differs from the classical one. In our model, the total magnetic moment of a hydrogen
atom is almost zero, which is not so in the classical (non-quantum) model. This observation also
reveals the importance of the notion of symmetric velocity, which was introduced in Chapter 2
of [10]. This velocity is the relativistic half of the regular velocity. In our model, the velocity of
both particles with respect to the new “center of mass” is the symmetric velocity of the velocity
of the electron in the classical model. It is known that the transformations of the symmetric
velocities are conformal [17]. Conformal transformations play an important role in the quantum
region.

This is only the first step in analyzing the hydrogen-like atom by use of Extended Relativistic
Dynamics. We plan to improve our model by: 1. Considering the next approximations of the
model. 2. Incorporating the interaction of the charges with the fields. 3. Taking into the
consideration the spin of the proton and the electron.
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