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Abstract. The talk concerns the inner symmetries of composite relativistic systems, their
(generic) relation with the Laplace-Runge-Lenz (LRL) symmetry and the definition of the
relativistic centre-of-mass. Global Lorentz-Poincaré symmetry implies the existence of LRL
symmetry, in a naturally generalized sense, as part of the inner symmetry of these systems, and
in a manner which is independent of the internal interaction. The corresponding LRL vectors
form the internal moments associated with the Lorentz boost, which, in turn, determines the
centre-of-mass.

1. Introduction

As the title suggests, the talk concerns the intrinsic relationship between the inner symmetries
of composite relativistic systems, the Laplace-Runge-Lenz (LRL) symmetry, and the definition
of the relativistic centre-of-mass (CM). The prime motive for the exploration that led to these
results was the wish to find yet another way to solve and describe relativistic dynamics. The
idea is that if Kepler-Coulomb systems, which are the non-relativistic limit of gravitational
or electromagnetic systems, are endowed with the LRL symmetry (at least for 2-body systems)
which completes the dynamical analysis of the system [1, 2, 3, 4], then perhaps the corresponding
relativistic systems are endowed with a generalization of the LRL symmetry [5, 6, 7] which
enables a better insight towards the full solution of the relativistic dynamics. For many years
this issue puzzled me; recently many pieces of the puzzle came together and fell naturally and
amazingly into their place.

The purpose of the talk is to show :

(i) That integration of the relativistic CM coordinate is not unique (as opposed to Newtonian
systems), and the LRL vector appears naturally as part of the process. This is the
fundamental observation upon which the talk is based.

(ii) The rôle of the LRL symmetry as inducing configuration-(or shape-)transformations which
are energy preserving.

(iii) Since the definition of the relativistic CM involves the Lorentz boost, it follows that the
LRL symmetry is naturally associated with Lorentz-Poincaré symmetry.

(iv) The LRL symmetry thus being an integral part of the internal symmetry of relativistic
systems.
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The following presentation is based on, and extends, recent publications by the present author
[8, 9, 10]. The systems considered are Lorenz-Poincaré-symmetric, endowed with total linear
momentum Pµ and total angular momentum Jµν which are conserved and serve as generators
of the corresponding global transformations. The metric convention is gµν = diag(−c2, 1, 1, 1).

The relativistic invariant mass of the system is M =
√
−P 2/c2.

2. The centre of mass

As a starting point, let us recall the way we arrive at the definition of the Newtonian CM in a
general reference frame. The CM velocity, defined from the total linear momentum and total
mass, is transformed into a derivative

~VCM ≡
~P

Mo
=

∑

ama~va
Mo

=
d

dt

(
∑

ama~xa
Mo

)

, (1)

(Mo ≡ ∑

ama), leading to the identification and definition of the expression in the brackets as
the CM coordinate,

~XN ≡
∑

ama~xa
Mo

(2)

Since any integration is determined up to an arbitrary additive constant, it might well be asked,
why not add such a constant also to Eq.(2) :

~X ′

N =

∑

ama~xa
Mo

+ ~C (3)

The argument is, of course, that if the particles are all located together at one point, say
~x1 = ~x2 = ... = ~xo, then also ~XN should coincide with the same point, requiring ~C to vanish. This
requirement rules out any c-number ~C, but what if ~C is not a c-number but a vector observable
which is an integral-of-the-motion that vanishes when the particles’ coordinate coincide ? Then
a non-zero ~C cannot be ruled out. Newtonian dynamics lives very happily with definition (2),
without the need for any addition. The case is essentially different in relativistic dynamics.

The relativistic 3-D CM velocity ~VCM = ~P/P o may be expanded in a general inertial reference
frame in powers of 1/c2 as

~VCM =

∑

ama~va
Mo

+O
(

c−2
)

=
d

dt

[
∑

ama~xa
Mo

+O
(

c−2
)

]

(4)

so that integration for the CM-coordinate itself yields

~XCM =

∑

ama~xa
Mo

+O
(

c−2
)

= ~XN +O
(

c−2
)

(5)

The phenomenon that is revealed and discussed in the following, being the main theme of
this presentation, an effect that is uniquely relativistic and disappears in the non-relativistic
limit, is that the process of integration leading from Eq.(4) to Eq.(5) is not unique : While the
integration of the Newtonian expression (1) involves only the kinematic relation ~va = d~xa/dt,
the integration of the O

(

c−2
)

-term in Eq.(4) requires, as becomes evident in the following, the
dynamical equations of motion. As a consequence, the O

(

c−2
)

-term in Eq.(5) is not an integral
of the motion, and may be obtained in more than one form.

As an illustration, let us compute the CM coordinate of a 2-body electromagnetic system in
the Post-Newtonian approximation. To keep things relatively simple let us consider the system
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in the CM reference frame (~P = ~p1 + ~p2 = 0). The total energy (keeping terms to order c−2) is
[11]

E = c2P o ≈ Moc
2 +

~p 2

2µ
−
(

1

m1
3
+

1

m2
3

)

p4

8c2
+

κ

r
+

κ

2m1m2c2r

[

~p 2 +
(~p · ~r)2

r2

]

(6)

with Mo = m1 + m2, µ = m1m2/Mo, ~r = ~x1 − ~x2 and ~p = ~p1 = −~p2. The time derivative
of the Newtonian CM coordinate (2) certainly does not vanish, so that, inserting the particles’
velocities ~va = ∂H/∂~pa, it becomes

d ~XN

dt
=

m1~v1 +m2~v2
Mo

≈ m1 −m2

2m1m2Moc2

[(

~p 2

µ
+

κ

r

)

~p+
κ (~p · ~r)

r3
~r

]

(7)

Since the rhs of Eq.(7) is already O
(

c−2
)

, we may use the Newtonian equation of motion to

express d ~XN/dt as a total derivative, and it turns out that this may be performed in two distinct
ways :

d ~XN

dt
≈ m1 −m2

2m1m2Moc2
d

dt

[(

~p 2 +
µκ

r

)

~r

]

(8a)

≈ m1 −m2

2m1m2Moc2
d

dt
[(~p · ~r) ~p] (8b)

with the immediate solutions

~XN ≈ m1 −m2

2m1m2Moc2

[(

~p 2 +
µκ

r

)

~r

]

+ ~C1 (9a)

≈ m1 −m2

2m1m2Moc2
[(~p · ~r) ~p] + ~C2 (9b)

A-priori, both modes of integration have the same privileges, without any preference of one
over the other. Evidently, the two constants of integration cannot vanish simultaneously, and,
since the integration involved the equations of motion, their difference must be a dynamical
constant of the motion. The surprising result is that the difference between these constants is

~C2 − ~C1 =
m1 −m2

2m1m2Moc2

[(

~p 2 +
µκ

r

)

~r − (~p · ~r) ~p
]

=
m1 −m2

2m1m2Moc2
~K (10)

where
~K =

(

~p 2 +
µκ

r

)

~r − (~p · ~r) ~p = ~p× ~ℓ+
µκ

r
~r (11)

is the classical LRL vector of the corresponding Kepler-Coulomb system !
The significance of this result is, of course, in demonstrating that the classical (Newtonian)

LRL vector emerges naturally in a relativistic calculation involving the Lorentz boost. This
state of affairs was originally observed by Dahl already years ago [12], but apparently passed
almost unnoticed by the physics community. The purpose of the present talk is to discuss the
meaning and applications of this observation to fully relativistic systems.

To get a first clue for the meaning of the constants ~C1 and ~C2, we recall that in the standard
approach to the issue of the relativistic CM coordinate it is defined [13, 14] (in the CM reference

frame) from the Lorentz boost ~N = J io via

~XCM =
~N

M
(12)
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where M is the invariant relativistic total mass of the system. With the PN Lorentz boost [11]
(in the CM reference frame)

~N ≈ M ~XN +
m2 −m1

2m1m2c2

(

~p 2 +
µκ

r

)

~r (13)

and the post-Newtonian total mass

M =
E

c2
≈ Mo +

~p 2

2µc2
+

κ

rc2
, (14)

the standard approach yields, via Eq.(12),

~XCM =
~N

M
≈ ~XN +

m2 −m1

2m1m2Moc2

(

~p 2 +
µκ

r

)

~r = ~C1 (15)

However, the second solution in (9b), which is a-priory valid just as the first one, suggests an
alternative definition for the CM coordinate,

~XCM =
~N

M
+

m1 −m2

2m1m2Moc2
~K ≈ ~XN +

m2 −m1

2m1m2Moc2
(~p · ~r) ~p = ~C2 (16)

The different constants of integration correspond, therefore, to different possible definitions of
the CM coordinate.

The LRL vector is an internal vector, which manifests the internal configuration of the system.
The standard approach as in Eq.(15) restricts the CM coordinate to dependence only upon the

global configuration of the system (via the dependence upon ~N and M , or more generally upon
Pµ and Jµν , alone). Eq.(16), on the other hand, opens the door for a broader definition, in
which the CM coordinate depends also upon the internal configuration of the system.

3. Universality of the Laplace-Runge-Lenz symmetry

The above demonstration, of the appearance of the LRL vector in the computation of the
post-Newtonian CM coordinate, calls for further inquiry regarding the appearance of the LRL
symmetry in fully relativistic systems. Therefore, our intention is to explore the proposition
that a generalization of this vector appears, in a similar fashion, in the computation of the CM
coordinate for fully relativistic systems.

As a requisite, we need first to explain and define what is meant by LRL symmetry and its
generalization to relativistic systems.

The LRL vector ~K (Eq.(11)) is a constant of the motion in classical Kepler-Coulomb systems
with Hamiltonian

H =
~p 2

2µ
+

κ

r
(17)

On energy hyper-surfaces H = E in phase-space, the internal angular momentum ~ℓ = ~r× ~p and
~K generate together, with the Poisson brackets (PB)

{

ℓi, ℓj
}

= εijkℓk ,
{

Ki, ℓj
}

=
{

ℓi,Kj
}

= εijkKk

{

Ki,Kj
}

= −2µEεijkℓk (18)

a closed Lie-Poisson algebra which is o(4) or o(3, 1) according to the sign of E [2, 3, 4]. Let ~u be

an arbitrary constant unit vector and χ a dimensionless parameter, so that δG =
(

~K · ~u
)

δχ is a
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generator of the infinitesimal transformations induced by ~K. As is evident from Eq.(18), these

transformations change ~K and ~ℓ, remaining on the same energy hyper-surface via the relation

~K2 − 2µE~ℓ 2 = µ2κ2 (19)

The shape of the orbits is characterized by ~K via the eccentricity ε =
∣

∣

∣

~K
∣

∣

∣ / (µ |κ|), while their
spatial orientation is determined by the direction of ~K. Elliptic closed orbits, for instance, with

the same energy but differing by their value of
∣

∣

∣

~K
∣

∣

∣ or
∣

∣

∣

~ℓ
∣

∣

∣ have the same major axis, and it is the

minor axis that changes (Fig. 1) :

2a =
|κ|
|E| , 2b =

√

√

√

√

2~ℓ 2

µ |E| (20)

Figure 1. Elliptic configurations
corresponding to different LRL
vectors.

Hence, while ~ℓ is responsible for internal rotations, ~K-induced transformations are responsible for
shape or configuration-changing, together composing the full internal symmetry of the system.

Although many still regard the LRL vector and the symmetry associated with it as
’accidental’, corresponding only to Newtonian Kepler-Coulomb systems, it is known already
since the mid-sixties that all rotationally invariant systems are endowed with a generalization
of the LRL vector [5, 6, 7]. Consequently, generalized (constant ) LRL vectors are definable for
all rotationally symmetric systems, including systems with open orbits. The generalization of
the LRL symmetry does not depend upon the type of interaction, implying its universality for
all rotationally symmetric systems.

These properties of the LRL symmetry are well summarized by the following proposition [9]:
The assumption of internal rotational symmetry implies the existence of an internal angular
momentum ~ℓ, the generator of internal rotations (so that

{

ℓi, V j
}

= εijkV k for all 3-vectors ~V ).

Then, if ~K is a constant vector so that :

(i) the scalar ~ℓ · ~K is ~K-invariant, in the sense that
{

~K, ~ℓ · ~K
}

= 0,

(ii) ~K2, being a constant scalar observable, is expressible as some function ~K2 = F
(

H,~ℓ2,A
)

only of H, ℓ2 (which is always the case for 2-body systems), and possibly on some observables

A that are also ~K-invariant,
{

~K,A
}

= 0,
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then the self PB of ~K are necessarily of the form

{

Ki,Kj
}

= −
∂
(

~K2

)

∂
(

~ℓ 2

) εijkℓk (21)

The classical LRL vector (11) with ~K2 = µ2κ2+2µE~ℓ 2 and the self PB (18) is an immediate

manifestation of Eq.(21). Any internal vector observable ~K that satisfies the conditions of the
proposition may be regarded as a generalized Laplace-Runge-Lenz vector. Since these conditions
are very broad, generalized LRL vectors are not unique; rather, for every system it is a whole
family of vectors that satisfy the LRL conditions. Therefore, the LRL property does not refer
to a specific vector, but it is the property of the whole system, stemming from its rotational
symmetry.

The remarkable feature about Eq.(21) is its universality : It is based only upon the rotational
symmetry of the system, and is independent of any particular form of the interaction. Also, it
does not require any particular recipe for the computation of the PB (except for the general
properties of Poisson brackets), and is therefore suitable also for systems which lack canonical
or phase-space structure,

4. Relativistic Laplace-Runge-Lenz symmetry

Carrying-over the LRL symmetry to relativistic systems is now straight-forward. Even in the
absence of clear and unique definition of canonical phase-space variables in classical relativistic
systems, Poisson brackets {·, ·} may be postulated satisfying the standard rules of Lie-Poisson
algebras, namely [15],

(i) Antisymmetry : {A,B} = −{B,A}
(ii) Jacoby identity : {A, {B, C}}+ {B, {C,A}}+ {C, {A,B}} = 0

(iii) Product (”Leibnitz”) rule : {A,BC} = {A,B}C + {A, C}B
(iv) Derivative rule: {A, f (B)} = {A,B} f ′ (B)
If δG is the generator of an infinitesimal space-time transformation and δA is the variation
of an observable A under that transformation, then the variation should define the PB via
δA = {A, δG}. With well-defined and conserved total 4-linear momentum Pµ and 4-angular
momentum Jµν , the fundamental PB are those of the Lorentz-Poincaré Lie-Poisson algebra,

{Pµ, P ν} = 0 ,
{

Pµ, Jνλ
}

= gµλP ν − gµνP λ

{

Jµν , Jλρ
}

= gµρJνλ − gµλJνρ + gνλJµρ − gνρJµλ (22)

Besides these relations, no specific canonical structure is assumed. The PB of any observable
which is constructed from Pµ and Jµν are easily computed from the fundamental PB (22), and
the PB of other observables with Pµ and Jµν are deduced from their transformation properties.

Since Pµ determines the orientation of the CM reference frame in space-time, we define
internal observables by being :

(a) Invariant under uniform translations, {A, Pµ} = 0;

(b) If not scalars, all their components are confined to the 3D hyperplane perpendicular to Pµ.

The spatial internal angular momentum tensor ℓµν , defined from Pµ and Jµν via ℓµν ≡ ∆µ
λ∆

ν
ρJ

λρ

with

∆µ
ν ≡ δµν +

PµPν

M2
, (23)
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is the generator of internal rotations in the CM reference frame. Dual to ℓµν is the vector
(proportional to the Pauli-Lubanski vector) ℓµ ≡ εµνλρJ

νλP ρ/ (2M) with ε1230 = +1. The
relativistic version of the LRL property is then
Let Kµ be an internal vector such that:

(i) {Kµ, ℓ ·K} = 0

(ii) K2 = F
(

M, ℓ2,A) ({Kµ,A} = 0)

Then the self-PB of Kµ satisfy

{Kµ,Kν} = −∂
(

K2
)

∂ (ℓ2)
ℓµν (24)

where ℓ2 = ℓµℓ
µ = 1

2
ℓµνℓ

µν .

5. Relativistic centre-of-mass integration

The preceding results brought together suggest the following picture for fully relativistic systems.
With constant total linear momentum, the space-time trajectory of the CM coordinate is
expected to be a straight line in the direction of Pµ, and it may always be written as the
centroid

Xµ = Xµ
o +

Pµ

M
τ (25)

where τ is the CM proper time and Xµ
o is a constant four-vector, identified as the spatial CM

coordinate. Appropriately fixing the zero of τ , Xµ
o may be assumed orthogonal to Pµ without

loss of generality, Xo · P = 0.
Once the CM coordinate [Eq.(25)] is assumed to be known, the total angular momentum Jµν

may always be split into combination of orbital (CM) and internal parts,

Jµν = XµP ν −XνPµ + jµν = Xµ
o P

ν −Xν
oP

µ + jµν (26)

so that jµν is the (constant) internal angular momentum relative to the centre-of-mass. Out of
the six components of jµν three are independent of the CM coordinate, fully determined by Jµν

and Pµ alone, constituting the spatial internal angular momentum tensor ℓµν . The remaining
three components of jµν determine Xµ

o . It is convenient to define the vector

Qµ ≡ jµνPν

M2
(27)

which incorporates these components. If Xµ
o is required to be formed of Pµ and Jµν alone in

a frame-independent manner then the unique possibility for it is the so-called centre-of-inertia
[13, 14],

Xµ
I
≡ −JµνPν

M2
, (28)

which in the CM ref. frame is given by Eq.(12), and for which Qµ = 0. However, allowing a
more general definition, Xµ

o is uniquely defined, inverting Eq.(26), in terms of Pµ, jµν and Qµ,

Xµ
o = −(Jµν − jµν)Pν

M2
= Xµ

I
+Qµ (29)

Qµ, certainly an internal vector, is thus regarded as the shift vector, shifting Xµ
o from the

centre-of-inertia (28) to the value given by Eq.(29).
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In principle, the single particle trajectories may be parameterized each by a different timelike
parameter, but for a common evolution picture a common parameter is required. Let σ be such
a common evolution parameter. Then the single particle trajectories are xµ = xµa(σ), with the
particles’ generalized velocities ẋµa ≡ dxµa/dσ. Since the CM coordinate Xµ (25) is assumed
to evolve in 4D space-time in the direction of Pµ, its projection Xµ

o = ∆µ
νX

ν onto the 3D
CM-hyperplanes (perpendicular to Pµ, using the projection tensor (23)) should be constant,
∆µ

νdX
ν/dσ = 0. Introducing the Lorentz-covariant generalization of the Newtonian CM (2), the

four-vector

Xµ
N
≡
∑

amax
µ
a

Mo

, (30)

then its 3D-projected derivative,

∆µ
ν

dXν
N

dσ
=

∑

ama∆
µ
ν ẋ

ν
a

Mo
=

∑

amav
µ
a

Mo
(31)

(with the spatial velocities vµa ≡ ∆µ
ν ẋ

ν
a) vanishes in the nonrelativistic limit (va/c → 0).

Therefore, the time-varying part of ∆µ
νdX

ν
N
/dσ is purely relativistic, and the difference Rµ =

∆µ
νX

ν
N −Xµ

o is an internal vector which vanishes in the nonrelativistic limit. Hence, in order to
determine Xµ

o , we look for the internal four-vector Rµ which satisfies

dRµ

dσ
= ∆µ

ν

dXν
N

dσ
=

∑

amav
µ
a

Mo
(32)

and vanishes in the nonrelativistic limit. Eq.(32) is the exact relativistic analog of Eq.(1) and
the full relativistic extension of Eq.(7). With its solution, the CM constant Xµ

o is given by

Xµ
o = ∆µ

νX
ν
N −Rµ (33)

In the standard approach the CM constant Xµ
o is given by the centre-of-inertia Xµ

I
(28),

suggesting an immediate solution of Eq.(32) in the form

Rµ
1
= ∆µ

νX
ν
N −Xµ

I
= ∆µ

νX
ν
N +

JµνPν

M2
(34)

This is the relativistic extension of the post-Newtonian relation Eq.(15), and in the following is
referred to as the trivial solution. But direct integration of Eq.(32) should yield also a different
result, in analogy with Eq.(9b), which is denoted henceforth Rµ

2
and referred to as the non-trivial

solution, defining a different CM constant Xµ
o given by

Xµ
o,2 = ∆µ

νX
ν
N −Rµ

2
(35)

Eliminating ∆µ
νX

ν
N
between the last two equations yields

Xµ
o,2 = Rµ

1
−Rµ

2
+Xµ

I
(36)

so comparison with Eq.(29) implies
Qµ = Rµ

1
−Rµ

2
(37)

The process of solving Eq.(32) for the nontrivial solution Rµ
2
, identifying the shift vector

(37), and constructing consequently the spatial CM component Xµ
o via Eq.(36), is referred to

as integration of the relativistic centre-of-mass [10].
In the post-Newtonian case discussed above (Eq.(16)) the shift vector is

~Q ≈ m1 −m2

2m1m2Moc2
~K (38)
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with ~Xo,2 = ~C2. In the general case, the existence of nontrivial solutions Rµ
2
implies the existence

of corresponding nonzero vectors Qµ, which are in fact LRL vectors. A couple of simply solvable
relativistic 2-body systems [8, 10] which serve here as a model, indicate the shift vector in the
form

Qµ =
2 (m1 −m2)

Mo

[

M2 − (m1 −m2)
2
]

c2
Kµ (39)

with Kµ the (fully relativistic) LRL vector with the self PB

{Kµ,Kν} = −

(

M2 −Mo
2
) [

M2 − (m1 −m2)
2
]

c2

4M2
ℓµν (40)

It is noted that Eqs.(39) and (40) are the same, for all the systems that were studied, regardless
of the interaction. From Eqs.(39) and (40) then follows

{Qµ, Qν} = −

(

M2 −Mo
2
)

(m1 −m2)
2

M2Mo
2

[

M2 − (m1 −m2)
2
]

c2
ℓµν (41)

The last relation bears consequence regarding the long-standing issue of the canonicity of the
relativistic CM coordinate : Using the fundamental PB (22) it may be shown that the self-PB
of Xµ satisfy

∆µ
λ∆

ν
ρ

{

Xλ,Xρ
}

= {Qµ, Qν}+ ℓµν

M2c2
(42)

Combined with (41), it follows that {Xµ,Xν} 6= 0, implying that Xµ cannot be canonical.

6. Applications

The scheme of integration of the relativistic CM has been already applied successfully to a
number of models and systems, such as :

• Post-Newtonian extension of 2-body systems with arbitrary spherically-symmetric
Newtonian potential [9]

• A fully relativistic two-body system without interactions) [8]

• A fully relativistic two-body system with special light-like, time-anti-symmetric, scalar-
vector(EM-like) interaction (interaction retarded for one particle and advanced for the
other) [10]

An interesting possible application stems from the fact that the CM integration scheme is
not limited to 2-body systems, and, at least in principle, could be applied to systems with
arbitrary number of particles or components. Therefore, it has the potential of defining a LRL-
like vector which is an integral of motion for many-body systems. This has been done for
post-Newtonian gravitational N-body systems with application to celestial mechanics [16], and
for fully relativistic systems of many non-interacting bodies [10].

7. Extended Noether theorem

Finally, let us point out interesting associations that the foregoing results have with the extended
Noether theorem regarding its application to the Lorentz boost. Consider a many-body system
with Lagrangian L (~xa, ~va, t). Assume variation of the coordinates ~xa → ~xa + δ~xa with δ~xa =

ε~ξa (~xb, ~vb, t) , δ~va = ε~̇ξa (~xb, ~vb, t). Using Lagrange’s equations of motion, the corresponding
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variation of the Lagrangian may always be put in the form δL = εd
(

∑

a ~pa · ~ξa
)

/dt. Then,

if δL = 0, the classical Noether theorem states that F =
∑

a ~pa · ~ξa is conserved. If,
however, δL 6= 0 but there exists a function φ (~xa, ~va, t) so that it is possible to write δL as

δL = εdφ (~xa, ~va, t) /dt while
∑

a ~pa · ~ξa 6= φ (~xa, ~va, t) then the extended Noether theorem states

that F =
∑

a ~pa · ~ξa − φ (~xa, ~va, t) is a constant of the motion [17, 18].
Particular examples of Newtonian symmetries that require the extended theorem are [17]

the Galilei transformation and the LRL symmetry in Kepler-Coulomb systems. Similarly, the
symmetry associated with the PN Lorentz transformation, and the corresponding conservation
of the Lorentz boost, cannot be dealt with under the terms of the classical Noether theorem,
and require the extended theorem. The phenomenon that is then revealed, much similar to the
integration of the relativistic CM, is that the integration that leads to the function φ (~xa, ~va, t)
involves the dynamical equations of motion and is not unique; and again, the difference between
the integrations involves the classical LRL vector.

Thus we consider an infinitesimal Lorentz transformation from a simultaneity hyperplane in
the CM reference frame to a simultaneity hyperplane in another inertial frame, moving with
velocity δ~V = ε~a relative to the former. The corresponding variation vector is

~ξa (~xa, ~va, t) =
1

c2
(~xa · ~a)~va − ~at (43)

Then, while
∑

a

~pa · ~ξa =
~p 2

µc2

[

(

~XN · ~a
)

+
m2 −m1

Mo

(~r · ~a)
]

, (44)

the corresponding variation of the 2-body PN Lagrangian [11] may be written as a derivative
δL = εdφ/dt in two different modes, with either

φ1 = −
(

Mo −
~p 2

2µc2
+

κ

rc2

)

(

~XN · ~a
)

+
m2 −m1

2µMoc2

(

~p 2 − µκ

r

)

(~r · ~a) (45a)

or

φ2 = −
(

Mo −
~p 2

2µc2
+

κ

rc2

)

(

~XN · ~a
)

+
m2 −m1

2µMoc2

[

(~r · ~p) (~p · ~a)− 2µκ

r
(~r · ~a)

]

, (45b)

thus defining, as Fi =
∑

a ~pa · ~ξa − φi, two constants of motion,

F1 = M
(

~XN · ~a
)

+
m2 −m1

2µMoc2

(

p2 +
µκ

r

)

(~r · ~a) = ~N · ~a , (46a)

F2 = M
(

~XN · ~a
)

+
m2 −m1

2µMoc2

[

− (~r · ~p) (~p · ~a) + 2

(

~p 2 +
µκ

r

)

(~r · ~a)
]

=

=

(

~N +
m2 −m1

2m1m2c2
~K

)

· ~a (46b)

The constant F1 is clearly related to the integration constant in Eq.(15), via F1 = M ~C1·~a. The
constant F2 would be expected to be associated, in a similar way, to the integration constant in
Eq,(16). Here, however, we encounter a bit of surprise, because while the expressions are similar,

the coefficient of ~K in Eq,(46b) has the opposite sign than that in Eq.(16). The reason for this
ambiguity is not completely clear, and the relationship between the integration of the relativistic
CM and the extended Noether theorem will be further studied in a separate publication.
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8. Conclusion

In this lecture we have demonstrated and discussed the relativistic origin and application of the
LRL symmetry. The existence of LRL symmetry as an internal symmetry is implied, via the
Lorentz boost, from the global Lorentz-Poincare’ symmetry, in a way that is independent of
internal interactions.

The LRL symmetry is therefore an integral part of the inner symmetry of relativistic systems.
The internal angular momentum jµν , defined in Eq.(26), may be expressed in terms of ℓµν and
the shift vector Qµ as

jµν = ℓµν −QµP ν +QνPµ (47)

We have seen that Qµ is proportional to the LRL vector, which in itself is responsible for changing
and determining the internal configuration. Thus, while ℓµν is responsible for spatial internal
rotations, the other part of jµν , QνPµ −QµP ν , is responsible for determination of the internal
configurations or state of motion. Since the shift vector Qµ appears in the mixed space-time
components of jµν , it may be regarded as the internal moment corresponding to the Lorentz
boost, while ℓµν contains the internal moments corresponding to spatial rotations (these are
regarded as internal moments, being computed relative to the CM frame, as opposed to global
moments, computed relative to arbitrary inertial reference frames). These relations are summed
up in the following table :

rotations +
change of

configuration

Global space-time symmetry :
global

rotations
+

Lorentz
transformations

l l
Internal symmetry :

internal
rotations

+ LRL
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