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Abstract. We derive a 4D covariant Relativistic Dynamics Equation. This equation
canonically extends the 3D relativistic dynamics equation F = dp

dt
, where F is the 3D force

and p = m0γv is the 3D relativistic momentum. The standard 4D equation F = dp
dτ

is only
partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank
2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we
obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein
and Planck.

We compute explicit solutions for uniformly accelerated motion. The solutions are divided
into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the
worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion,
while rotational acceleration covariantly extends pure rotational motion.

We use Generalized Fermi-Walker transport to construct a uniformly accelerated family
of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We
explain the connection between our approach and that of Mashhoon. We show that our solutions
of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming
the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly
accelerated frame K′ to an inertial frame K. The spacetime transformations between two
uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric
at an arbitrary point of a uniformly accelerated frame.

We obtain velocity and acceleration transformations from a uniformly accelerated system
K′ to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron’s
notion of “off-shell.” We derive the general formula for the time dilation between accelerated
clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every
rest point of K′ is uniformly accelerated, and its acceleration is a function of the observer’s
acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac
equation as an acceleration transformation from K′ to K.

1. Introduction

Newton’s Second Law F = ma can be written as F = dp
dt , where p = mv is the

classical momentum. In special relativity, the classical momentum is replaced by the relativistic
momentum p = m0γv, and Newton’s Second Law is replaced by the standard 3D relativistic
dynamics equation [1, 2, 3]

F = m0
d(γv)

dt
. (1)
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When the 3D force F is constant, the solutions to (1) are traditionally called uniformly accelerated
motion. Equation (1), however, is covariant only with respect to the little Lorentz group and
not covariant with respect to the full Lorentz group.

As a 4D extension of (1), we have

F =
dp

dτ
, (2)

where F is the four-force, p is the four-momentum, and τ is proper time (see [1]). Unfortunately,
equation (2) is also covariant only with respect to the little Lorentz group. Moreover, when F
is a constant, as in a homogeneous gravitational field, equation (2) has no solution! This follows
from the fact that the four-velocity and the four-acceleration are perpendicular. This was
noticed by Planck, who wrote to Einstein about it. This, in turn, prompted Einstein to submit
a “correction” [4] to [5]. In the correction, he states that the “concept ‘uniformly accelerated’
needs further clarification.” This was a call for a fully Lorentz covariant relativistic dynamics
equation and for a better definition of “uniform acceleration.”

It was clear, even in 1908, that the physical definition of “uniformly accelerated motion” is
motion whose acceleration is constant in the comoving frame. This definition is found widely in
the literature, as early as [6] and [7], again in [8], and as recently as [9] and [10]. This definition is
natural, since the acceleration in the comoving frame is “precisely the push we feel when sitting in
an accelerating rocket” or automobile. Similarly, “by the equivalence principle, the gravitational
field in our terrestrial lab is the negative of our proper acceleration, our instantaneous rest frame
being an imagined Einstein cabin falling with acceleration g” ([2], page 71). Indeed, we will, at
times, invoke the Equivalence Principle and interpret accelerations as the effect of a gravitational
field of a massive object.

If the acceleration is constant in the comoving frame, then the length of the four-acceleration
a is constant:

aµaµ = constant. (3)

Equation (3) is a good candidate to replace (2). It’s even fully Lorentz covariant. However, as in
the case of equations (1) and (2), existing techniques have produced only 1D hyperbolic motion
as solutions to (3). There are clearly some missing solutions, since equation (3) is covariant,
while the class of 1D hyperbolic motions is not.

We are thus faced with two problems:

(1) Can F = dp
dt be extended to a 4D Lorentz covariant version?

(2) What is the “right” equation for uniformly accelerated motion?

In this paper, we derive a 4D Lorentz covariant Relativistic Dynamics Equation:

c
duµ

dτ
= Aµνu

ν , (4)

where u is the four-velocity, τ is proper time, and Aµν is a rank 2 antisymmetric tensor,
or, equivalently, Aµν is skew adjoint with respect to the Minkowski inner product ηµν =
diag(1,−1,−1,−1). As will be shown here, equation (4) has the following advantages:

• It canonically extends the Relativistic Dynamics Equation (1) and is covariant with respect
to the full Lorentz group

• By redefining uniformly accelerated motion as the solutions to (4) when A is constant, we
obtain the clarification that Einstein was looking for

• It admits four Lorentz-invariant classes of solutions: null acceleration, linear acceleration,
rotational acceleration, and general acceleration. The null, rotational, and general classes
were previously unknown. The linear class is a covariant extension of 1D hyperbolic motion
and contains the motion of an object in a homogeneous gravitational field
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• It can be extended in a straightforward manner to obtain a covariant definition of the
“comoving frame” of a uniformly accelerated observer. In this comoving frame, all of the
solutions of (4) have constant acceleration.

• It can be modified to accommodate a universal maximal acceleration. Thus, this paper is an
important step in the study of evidence for and implications of the existence of a universal
maximal acceleration (see [11, 12, 13]).

The plan of the paper is as follows. In section 2, we derive a 4D Lorentz covariant Relativistic
Dynamics Equation. We also show that equations (1) and (2) are not Lorentz covariant. They
are, however, canonically embedded in (4). By taking the tensor A to be constant, we obtain a
covariant definition of uniformly accelerated motion. In section 3, we obtain explicit solutions to
equation (4) in the case of a constant force. Our solutions are divided into four Lorentz-invariant
types: null acceleration, linear acceleration, rotational acceleration and general acceleration.
The linear acceleration is a covariant extension of 1D hyperbolic motion. The rotational class
is a covariant extension of rotations. By integrating our solutions, we obtain trajectories of a
uniformly accelerated observer. We conclude this section by computing the nonrelativistic limits
of our solutions.

In section 4, we attach to our observer a uniformly accelerated frame, which is defined
covariantly by extending equation (4). Our technique is essentially that of Generalized Fermi-
Walker transport and provides a covariant definition of the comoving frame of a uniformly
accelerated observer. We then show that all of our solutions to (4) have constant acceleration in
the comoving frame. We also show that our definition of the comoving frame is equivalent to that
of Mashhoon [14]. We also have the surprising result that if two uniformly accelerated frames
have a common acceleration tensor A, then the spacetime transformations between them are
Lorentz, despite the fact that neither frame is inertial. In section 5, we use the Weak Hypothesis
of Locality to compute the spacetime transformations from a uniformly accelerated frame to an
inertial frame. We show that these transformations extend the Lorentz transformations. Section
6 is devoted to examples of these transformations.

In section 7, we adapt Horwitz and Piron’s notion of “off-shell” [15] to the four-velocity. We
call the new notion the 4D velocity and use it to derive velocity transformations from K ′ to
K. We show that when K ′ is inertial, our velocity transformations reduce to the usual Einstein
velocity addition. Using the ratio between the four-velocity and the 4D velocity, we obtain, in
section 8, the general formula for the time dilation between clocks located at different positions
in K ′. We also derive a formula for the angular velocity of a uniformly accelerated body. In
section 9, we consider an observer located at an arbitrary point (not necessarily the origin, as
has been the case until now) of a uniformly accelerated frame and show that this observer is also
uniformly accelerated. We then derive the transformation formulas for the components g and ω
of the acceleration tensor A. Section 10 is devoted to acceleration transformations from K ′ to
K. We use our acceleration transformations to explain the Lorentz-Abraham-Dirac equation.
In section 11, we discuss the continuation of this research.

Accelerated reference frames were also studied in [16] and [17].

2. Covariant Relativistic Dynamics Equation

In this section, we derive a 4D Lorentz covariant Relativistic Dynamics Equation (equation
(22) below). We also show that equations (1) and (2) are not Lorentz covariant. They are,
however, canonically embedded in (22). First, we will review some basic notions and establish
our notation.
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2.1. Basic Notions

In flat Minkowski space, the spacetime coordinates of an event are denoted by xµ (µ =
0, 1, 2, 3), with x0 = ct. The Minkowski inner product is

x · y = ηµνx
µyν , (5)

where η is the Minkowski metric ηµν = diag(1,−1,−1,−1). The worldline of a particle is

x(t) = (ct,x(t)). The particle’s 3D velocity is v = dx
dt . Then dx

dt = (c,v), and the dimensionless
scalar γ is defined by

γ = γ(v) =
1∣∣ dx
cdt

∣∣ =
1√

1− v2

c2

. (6)

The particle’s proper time, denoted by τ , is defined by

γdτ = dt. (7)

Since cdτ = ds, where ds is the differential of arc length along the particle’s worldline, the proper
time is a Lorentz invariant quantity. The particle’s dimensionless four-velocity uµ is defined, as
usual, by

uµ =
dxµ

ds
=

1

c

dxµ

dτ
, (u0, u1, u2, u3) = γ

(
1,

v

c

)
, (8)

and its proper velocity u is c times the spatial part of the four-velocity:

u = γ(v)v. (9)

A straightforward calculation shows that we can write γ as a function of the proper velocity:

γ =

√
1 +

u2

c2
. (10)

The four-velocity always has “length” 1 in the Minkowski metric:

|u| =
√
ηµνuµuν = 1. (11)

The particle’s four-acceleration aµ is defined by

aµ = c
duµ

dτ
(12)

and has units of acceleration. Differentiating u ·u = 1, we see that the four-acceleration and the
four-velocity are always perpendicular:

u · a = ηµνu
µaν = 0. (13)

This implies that the four-acceleration is spacelike.
The rest-mass of an object is denoted by m0, and we let m = m(v) = m0γ = m0γ(v).

The 3D momentum is p = mv = m0γv = m0u, and the four-momentum is p = m0cu =
(m0γc,m0γv) = (mc,p).
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2.2. Embedding F = dp
dt in Four Dimensions

The standard Relativistic Dynamics Equation is the 3D equation

F =
dp

dt
. (14)

In special relativity, however, we require a 4D version of this equation. Since the 3D vector p is
part of the four-momentum p, we seek an appropriate expression for dp

dτ (or du
dτ ).

It is natural to consider the 4D equation

F =
dp

dτ
. (15)

This equation, however, has no solution when F is a constant four-vector. To see this, suppose F
is constant. Then, since F ∼ a, equation (13) implies that a is both lightlike and perpendicular
to the timelike vector u, which is impossible. This implies that the four-acceleration cannot
be constant in an inertial frame. Hence, equation (15) cannot be used to model constant-force
motion and is inappropriate as a dynamics equation.

Next, we show that F = dp
dt = m0

du
dt can be written in the form cdudτ = Au, where A is an

antisymmetric tensor. Since u = (γ,u/c), we have

du

dτ
=

(
dγ

dτ
,
du

cdτ

)
. (16)

Using (10) and then (7), we have

dγ

dτ
=
dγ

du

du

dτ
=

u/c2

γ
· γ du

dt
=

u

c2
· du
dt

=
1

m0c2
u · F, (17)

and
du

dτ
= γ

du

dt
=

γ

m0
F. (18)

Combining (17) and (18), we have

c
du

dτ
=

1

m0

(
0 FT

F 0

)
u, (19)

where the superscript T denotes matrix transposition. This shows that the 3D Relativistic
Dynamics Equation (14) is equivalent to

c
du

dτ
= Au, with A =

1

m0

(
0 FT

F 0

)
. (20)

Note that A is an antisymmetric tensor of the particular form

(
0 gT

g 0

)
, where g = 1

m0
F. As

an operator, A = Aµν has mixed indices, one upper and one lower. If we lower the upper index
using the Minkowski metric, Aµν is antisymmetric.
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2.3. Achieving Lorentz Covariance

A tensor of the form

(
0 gT

g 0

)
is not Lorentz covariant. In fact, a Lorentz transformation of

such a tensor will, in general, produce any antisymmetric tensor. Therefore, in order to achieve
Lorentz covariance, we must allow A to be any antisymmetric tensor. In fact, if F = Au, where
is a tensor, then A must be antisymmetric. To see this, first note that since, from (15), F ∼ a,
we have, from (13), that u · F = 0. Substituting F = Au, we obtain

0 = ηµνu
µF ν = ηµνu

µAναu
α = uµAµαu

α,

and so
Aαβ = −Aβα. (21)

The need for antisymmetry can be understood as follows. The Lorentz transformation produces
a rotation in Minkowski spacetime. Similarly, acceleration can be interpreted as a rotation of
the four-velocity, since the four-acceleration is perpendicular to the four-velocity. It is known
that a rotation in 3D Euclidean space is given by the exponent of an antisymmetric tensor. The
antisymmetry of A is the 4D extension of this fact.

We thus arrive at a 4D Lorentz covariant Relativistic Dynamics Equation

c
duµ

dτ
= Aµνu

ν (22)

where Aµν is an antisymmetric rank 2 tensor, or, equivalently, Aµν is skew adjoint with respect
to the inner product (5). The components of A have units of acceleration and may be functions
of the position x and the four-velocity u. We refer to A as the acceleration tensor associated
with the given motion. Equation (22) solves the first problem mentioned in the introduction.

In the 1 + 3 decomposition, the tensors Aµν and Aµν take the form

Aµν(g,ω) =

 0 gT

−g −cπ(ω)

 , Aµν (g,ω) =

 0 gT

g cπ(ω)

 , (23)

where g is a 3D vector with units of acceleration, ω is a 3D vector with units of 1/time, and,
for any 3D vector ω = (ω1, ω2, ω3),

π(ω) = εijkω
k,

where εijk is the Levi-Civita tensor. The factor c inA provides the necessary units of acceleration.
The 3D vectors g and ω are related to the linear, or translational, acceleration and the angular
velocity, respectively, of the motion. We will obtain a more precise explanation of the physical
meaning of these vectors in sections 4 and 8. We will also show there that if a uniformly
accelerated system was at rest at time t = 0, then F/m0 is the constant acceleration in the
comoving frame.

By (20), F = dp
dt is equivalent to a 4D equation

c
du

dτ
=

 0 gT

g cπ(ω)

u, (24)

where ω = 0. Hence, F = dp
dt is covariant only with respect to transformations which preserve

the condition ω = 0. A straightforward calculation shows that the only Lorentz transformations
which preserve the condition ω = 0 are boosts in the direction of F and spatial rotations about
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the axis of F . The little Lorentz group, as defined in [18], is the stabilizer of the spatial axis

in a given direction, which we may choose to be the direction of the force F. Thus, F = dp
dt is

covariant only with respect to this little Lorentz group and not to the full Lorentz group. It
follows immediately that 1D hyperbolic motion is also covariant only with respect to this little
Lorentz group.

For an additional proof, note that the spatial part of (24) is

du

dτ
= γg + u× ω, or

dp

dt
= F + γ−1p× ω. (25)

Hence, F = dp
dt if and only if ω = 0.

By taking the tensor A to have constant components, we obtain a covariant definition of
uniformly accelerated motion, thus solving the second problem mentioned in the introduction.
We define uniformly accelerated motion as motion whose four-velocity u(τ) is a solution to the
initial value problem

c
duµ

dτ
= Aµνu

ν , u(0) = u0, (26)

where Aµν is an antisymmetric rank 2 tensor with constant components, or, equivalently, Aµν
is constant and skew adjoint with respect to the inner product (5). In the next section, we
compute explicit solutions to (26).

3. Explicit Trajectories for Uniformly Accelerated Motion
In this section, we obtain explicit trajectories for uniformly accelerated motion, that is, we

obtain the explicit solutions u(τ) of (26). It is known (see [19], page 1-65) that for a given initial
condition u(0) = u0, (26) has the unique solution

u(τ) = exp(Aτ/c)u0 =

( ∞∑
n=0

An

n!cn
τn

)
u0 . (27)

The worldline x̂(τ) of a uniformly accelerated observer may then be obtained by integrating
u(τ).

Since A is antisymmetric, all solutions of the form (27) are Lorentz transformations of the
initial velocity u0, with an angle that is linear in τ .

3.1. Lorentz-Invariant Classification of Solutions
Fix A = Aµν (g,ω) as in (23). It can be shown by direct calculation that

det(A− aI) = a4 − l1a2 − c2(l2)2, (28)

where l1 = g2 − c2ω2 and l2 = g · ω are Lorentz invariants, similar to the two known Lorentz
invariants associated with the electromagnetic field. Hence, the matrix Aµν (g,ω) (one upper
index, one lower index) has the eigenvalues ±α and ±iβ, where

α =

√√
(l1)2 + 4(cl2)2 + l1

2
and β =

√√
(l1)2 + 4(cl2)2 − l1

2
.

We classify our solutions for uniformly accelerated motion into four types, depending on the
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values of the Lorentz invariants and the eigenvalues of Aµν (g,ω):

Type Lorentz invariants Eigenvalues

Null l1 = l2 = 0 α = 0, β = 0

Linear l1 > 0, l2 = 0 α =
√
l1 > 0, β = 0

Rotational l1 < 0, l2 = 0 α = 0, β =
√
−l1 > 0

General l2 6= 0 α > 0, β > 0

Note that each type is a Lorentz-invariant subset.

For each of the four types of uniformly accelerated motion, we now obtain the explicit
solutions u(τ) of (26).

3.2. Null Acceleration (α = 0, β = 0)
In this case, |g| = c|ω| and g ⊥ ω. Direct calculation shows that A3 = 0. Thus, from (27), we
have

u(τ) = u(0) +Au(0)τ/c+
1

2
A2u(0)τ2/c2 (29)

The four-acceleration is

a(τ) = c
du

dτ
= Au(0) +A2u(0)τ/c. (30)

Despite the apparent dependence of the four-acceleration on τ , we will show in section 6 that
the length of a(τ) is, in fact, constant.

The worldline x̂(τ) of a uniformly accelerated observer is, then, cubic in τ and may be
obtained by integrating u(τ):

x̂(τ) = x̂(0) + c

∫ τ

0
u(s)ds = x̂(0) + u(0)cτ +

1

2
Au(0)τ2 +

1

6
A2u(0)τ3/c. (31)

A similar cubic equation was obtained in [20] and page 83 of [21].
Note that, in general, A2 6= 0, as can be seen from the example

A =


0 1 0 0
1 0 0 −1
0 0 0 0
0 1 0 0

 , A2 =


1 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 −1

 .

3.3. Linear, Rotational and General Acceleration
We will obtain the solutions for the remaining three types using the eigenvalues and eigenvectors

of A. The following two claims use the linear extension η∗ of the Minkowski inner product (5)
to complex Minkowski space (see [22], p. 12).

Claim 1 Let A be a skew adjoint matrix with respect to η∗. Let a be a non-zero eigenvalue
of A. If v is an eigenvector of A corresponding to a, then v is lightlike.

To see this, note that

av2 = v · av = v ·Av = −Av · v = −av · v = −av2.
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Since a 6= 0, we must have v2 = 0. This proves the claim.

Claim 2 Let A be a skew adjoint matrix with respect to η∗. If v1 is an eigenvector
corresponding to the eigenvalue a, and v2 is an eigenvector corresponding to the eigenvalue
µ, where a 6= −µ, then v1 and v2 are orthogonal.

To see this, note that

a(v1 · v2) = av1 · v2 = Av1 · v2 = v1 · −Av2 = v1 · −µv2 = −µ(v1 · v2).

Since a 6= −µ, we must have v1 · v2 = 0. This proves the claim.

We will also need the following notation. Let r be a real four-vector, and let {E0, E1, E2, E3} be
linearly independent (possibly complex) four-vectors. Let c0, c1, c2, c3 be the unique (possibly
complex) numbers such that r =

∑3
k=0 ckEk. Let =(z) denote the imaginary part of a complex

scalar or vector z. Define

D0(r) = c0E0 + c1E1, D1(r) = c0E0 − c1E1,

D2(r) = c2E2 + c3E3, D3(r) = −2=(c2E2).
(32)

3.4. Linear Acceleration (α > 0, β = 0)

In this case, we have α =
√

g2 − c2ω2 and g ⊥ ω. Let E0 and E1 be eigenvectors corresponding
to the eigenvalues α and −α, respectively, and let E2 and E3 be linearly independent eigenvectors
corresponding to the eigenvalue 0. Note that we may choose all of the eigenvectors to be real.
Then

u(τ) = c0E0e
ατ/c + c1E1e

−ατ/c + c2E2 + c3E3,

where u(0) =
∑3

k=0 ckEk. Using (32), with Dµ = Dµ(u(0)), we have

u(τ) = D0 cosh(ατ/c) +D1 sinh(ατ/c) +D2 (33)

We claim that D0, D1, D2 are mutually orthogonal. By Claim 2, D2 ∈ Span(E2, E3) is
orthogonal to both D0 and D1, which belong to Span(E0, E1). To show that D0 · D1 = 0,
note that E0 = (1/2c0)(D0 +D1) and E1 = (1/2c1)(D0 −D1) are lightlike, by Claim 1. Hence,
(D0)

2±2D0 ·D1+(D1)
2 = 0, implying that D0 ·D1 = 0. This also implies that (D1)

2 = −(D0)
2.

From (12) and (33), we obtain

a(τ) = αD0 sinh(ατ/c) + αD1 cosh(ατ/c). (34)

The length of a(τ) is constant:
a2(τ) = −α2(D0)

2, (35)

and thus satisfies (3). Since a is spacelike, D0 is timelike.
The interpretation of the solutions (33) are as follows. In the plane generated by D0 and D1,

there is 1D hyperbolic motion, and this plane is moving in a normal direction with four-velocity
D2. These solutions form a covariant extension of 1D hyperbolic motion.

3.5. Rotational Acceleration (α = 0, β > 0)

In this case, we have β =
√
c2ω2 − g2 and g ⊥ ω. Let E2 and E3 be eigenvectors corresponding

to the eigenvalues iβ and −iβ, respectively, and let E0 and E1 be linearly independent

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012009 doi:10.1088/1742-6596/437/1/012009

9



eigenvectors corresponding to the eigenvalue 0. Since the two complex eigenvalues are complex
conjugates of each other, we may choose E3 = E2. Then

u(τ) = c0E0 + c1E1 + c2E2e
iβτ/c + c3E2e

−iβτ/c,

where u(0) =
∑3

k=0 ckEk. Since u(τ) is real, we must have c3 = c2. Using (32), with
Dµ = Dµ(u(0)), we have

u(τ) = D0 +D2 cos(βτ/c) +D3 sin(βτ/c) (36)

We claim that D0, D2, D3 are mutually orthogonal. By Claim 2, D0 ∈ Span(E0, E1) is
orthogonal to both D2 and D3, which belong to Span(E2, E3). To show that D2 · D3 = 0,
note that E2 = 1/2ic2(iD2 + D3), E3 = 1/2ic3(iD2 − D3) are lightlike, by Claim 1. Hence,
−(D2)

2±2iD2 ·D3+(D3)
2 = 0, implying that D2 ·D3 = 0. This also implies that (D2)

2 = (D3)
2.

From (12) and (36), we obtain

a(τ) = −βD2 sin(βτ/c) + βD3 cos(βτ/c). (37)

The length of a(τ) is constant:
a2(τ) = β2(D2)

2, (38)

and thus satisfies (3). Since a is spacelike, D2 is also spacelike. Substituting τ = 0 into (36), we
obtain that D0 is timelike.

The interpretation of the solutions (36) are as follows. In the plane generated by D2 and D3,
there is pure rotational motion, and this plane is moving in a normal direction with four-velocity
D0. The solutions (36) form a covariant extension of pure rotational motion.

3.6. General Acceleration (α > 0, β > 0)
Since the four eigenvalues ±α,±iβ are distinct, there are linearly independent eigenvectors
E0, E1, E2, E3 of α,−α, iβ,−iβ, respectively. Since the two complex eigenvalues are complex
conjugates of each other, we may choose E3 = E2. Then

u(τ) = c0E0e
ατ/c + c1E1e

−ατ/c + c2E2e
iβτ/c + c3E2e

−iβτ/c,

where u(0) =
∑3

k=0 ckEk. Since u(τ) is real, we must have c3 = c2. Using (32), with
Dµ = Dµ(u(0)), we have

u(τ) = D0 cosh(ατ/c) +D1 sinh(ατ/c) +D2 cos(βτ/c) +D3 sin(βτ/c) (39)

As in the previous cases, the vectors D0, D1, D2, D3 are mutually orthogonal, (D1)
2 =

−(D0)
2, and (D2)

2 = (D3)
2.

From (12) and (39), we obtain

a(τ) = αD0 sinh(ατ/c) + αD1 cosh(ατ/c)− βD2 sin(βτ/c) + βD3 cos(βτ/c). (40)

The length of a(τ) is constant:
a2(τ) = −α2D2

0 + β2D2
2, (41)

and thus satisfies (3).
Since, in this case, g and ω are not perpendicular, there exists a basis in which they are parallel

(see [8]). Here, we have in fact obtained the explicit form of this basis, namely, {D0, D1, D2, D3}.
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In the plane generated by D2 and D3, there is pure rotational motion, and this plane is uniformly
accelerated in a normal direction.

This completes all of the cases. The general solution to (26) is

u(τ) =



u(0) +Au(0)τ/c+ 1
2A

2u(0)τ2/c2 , if α = 0, β = 0 (null acceleration)

D0 cosh(ατ/c) +D1 sinh(ατ/c) +D2 , if α > 0, β = 0 (linear acceleration)

D0 +D2 cos(βτ/c) +D3 sin(βτ/c) , if α = 0, β > 0 (rotational acceleration)

D0 cosh(ατ/c) +D1 sinh(ατ/c)
+D2 cos(βτ/c) +D3 sin(βτ/c) , if α > 0, β > 0 (general acceleration)


.

(42)

3.7. Nonrelativistic Limit
Here we compute the nonrelativistic limit (c→∞) for uniformly accelerated motion. Notice

from (23) that c appears in the definition of the acceleration tensor A. However, this is only
to provide the correct units. Thus, when taking the limit c → ∞, we may consider cπ(ω) as a
constant π(ω′). We refer to this method as “holding the tensor A constant”. This is equivalent
to holding the eigenvalues α and β constant. Alternatively, when taking the limit c → ∞, we
may “hold the components g and ω constant” and let the c of cπ(ω) also go to infinity.

For null acceleration, we must hold the tensor A constant since letting the c of cπ(ω) go to
infinity breaks the condition g2 = c2ω2. Note that the spatial part of cu is the velocity v in the
nonrelativistic limit, and, in particular, the spatial part of cu(0) is v(0) in this limit. Thus, the
nonrelativistic limit of (29) is

v(t) = lim
c→∞

(
v(0) +Av(0)τ/c+O(c−2)

)
= v(0), (43)

implying that the velocity in such motion is constant. Thus, the nonrelativistic limit of null
acceleration is zero acceleration. This justifies the name null acceleration.

Next, we compute the nonrelativistic limits for linear, rotational, and general acceleration
when we hold the tensor A constant. First, we show that the 3D acceleration a = dv

dt is the

nonrelativistic limit of the spatial part of a(τ). To see this, note that the spatial part of a = cdudτ
is du

dτ . Using (17), we have

du

dτ
=

d

dτ
(γv) = v

dγ

dτ
+ γ

dv

dτ
=

(
u

c2
· du
dt

)
v + γ2

dv

dt
, (44)

which tends to dv
dt in the nonrelativistic limit.

In the linear case, from (34), we have

lim
c→∞

a(τ) = αD1. (45)

Similarly, for the rotational case, from (37) we get limc→∞ a(τ) = βD3, and for general
acceleration, from (40) we get limc→∞ a(τ) = αD1 + βD3. Since D1 and D3 do not depend
on c, the 3D acceleration a is constant in all of these cases in the nonrelativistic limit.

To identify the acceleration, we take the nonrelativistic limit of the first equation of (25) and
substitute t = 0. This gives a = g + v(0)×ω. Thus, the 3D velocity in the nonrelativistic limit
is

v(t) = v(0) + (g + v(0)× ω)t. (46)
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The nonrelativistic limit is constant linear acceleration. For ω = 0, we obtain the usual
nonrelativistic result. A nonzero value of ω, however, will change both the magnitude and
the direction of the acceleration.

Finally, we compute the nonrelativistic limit by holding the components g and ω constant.
For linear acceleration, we have g2 > c2ω2, and so we cannot let c→∞. Thus, we will consider
only rotational and general acceleration. Since, in this case, α, β and the Di all vary with c, it
is easier to pass to the nonrelativistic limit of the first equation of (25), which is

dv

dt
= g + v × ω. (47)

Equation (47) describes nonrelativistic motion under a Lorentz-type force. If g = 0, we obtain
rotation with uniform angular velocity ω. If ω = 0, we obtain linear acceleration.

4. Covariant Comoving Frame

In this section, we use Generalized Fermi-Walker transport to define the notion of the
comoving frame of a uniformly accelerated observer. We then show that in this comoving frame,
all of our solutions to equation (22) have constant acceleration. We show that our definition of
the comoving frame is equivalent to that of Mashhoon [14]. We also show that if two uniformly
accelerated frames have a common acceleration tensor A, then the spacetime transformations
between them are Lorentz, despite the fact that neither frame is inertial.

Gupta and Padmanabhan [23] applied Fermi-Walker transport to an accelerated charge and
obtained the Lorentz-Abraham-Dirac equation.

4.1. Uniformly Accelerated Family of Inertial Frames

First, we define the notion of a one-parameter family of inertial frames which are
instantaneously comoving to a uniformly accelerated observer. We call such a family a uniformly
accelerated family. The coordinates in this family of comoving frames will be used as a bridge
between the observer’s coordinates and the coordinates in an inertial frame K, which, without
loss of generality, we may take to be the initial frame K0 of the observer himself. The family
of frames is constructed by Generalized Fermi-Walker transport of the initial frame K0 along
the worldline of the observer. In the case of 1D hyperbolic motion, this construction reduces to
Fermi-Walker transport [24, 25].

In fact, Fermi-Walker transport may only be used in the case of 1D hyperbolic motion. This
is because Fermi-Walker transport uses only a part of the Lorentz group - the boosts. This
subset of the group, however, is not a subgroup, since the combination of two boosts entails a
rotation. Generalized Fermi-Walker transport, on the other hand, uses the full homogeneous
Lorentz group, and can be used for all four types of uniform acceleration: null, linear, rotational,
and general.

The construction of the uniformly accelerated family {Kτ : τ ≥ 0} is according to the
following definition.

Definition 1. Let x̂(τ) be the worldline of a uniformly accelerated observer whose motion is
determined by the acceleration tensor A, the initial four-velocity u(0), and the initial position
x̂(0).

To specify the initial frame K0, we take the origin at time τ = 0 to be x̂(0). For the basis of

K0, choose any orthonormal basis λ̂ = {u(0), λ̂(1), λ̂(2), λ̂(3)}.
For each τ > 0, define Kτ as follows. The origin of Kτ at time τ is set as x̂(τ). The basis

of Kτ is defined to be the unique solution λ(τ) = {λ(κ)(τ) : κ = 0, 1, 2, 3}, to the initial value
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problem

c
dλµ(κ)

dτ
= Aµνλ

ν
(κ) , λ(κ)(0) = λ̂(κ). (48)

We make the following observations about definition 1:

(1) The choice of the initial four-velocity u(0) for λ̂(0) is deliberate and required by Generalized
Fermi-Walker transport.

(2) For all τ , we have λ(0)(τ) = u(τ). This follows immediately from (26).

(3) From (27), the unique solution to (48) is

λ(κ)(τ) = exp(Aτ/c)λ̂(κ). (49)

Using matrix multiplication, we combine the solutions for κ = 0, 1, 2, 3 into one equation

λ(τ) = exp(Aτ/c)λ̂. (50)

(4) Since A is antisymmetric, exp(Aτ/c) is an isometry. Thus, λ(τ) is an orthonormal basis.

(5) Analogously to (42), the general solution to (48) is

λ(κ)(τ) =



λ̂(κ) +Aλ̂(κ)τ/c+ 1
2A

2λ̂(κ)τ
2/c2 , if α = 0, β = 0 (null acceleration)

D0(λ̂(κ)) cosh(ατ/c) +D1(λ̂(κ)) sinh(ατ/c) +D2(λ̂(κ)),
if α > 0, β = 0 (linear acceleration)

D0(λ̂(κ)) +D2(λ̂(κ)) cos(βτ/c) +D3(λ̂(κ)) sin(βτ/c),
if α = 0, β > 0 (rotational acceleration)

D0(λ̂(κ)) cosh(ατ/c) +D1(λ̂(κ)) sinh(ατ/c)

+D2(λ̂(κ)) cos(βτ/c) +D3(λ̂(κ)) sin(βτ/c) , if α > 0, β > 0 (general acceleration)



.

(51)

(6) For a given A, all four solutions λ(κ)(τ), κ = 0, 1, 2, 3 are of the same type (null, linear,
rotational, or general). The comoving frame of a rotating observer “rotates” along with
him, and he feels that in this frame, the acceleration is constant.

(7) Along the worldline, the components of the acceleration tensor A remain constant. To see
this, let A denote the tensor as computed in the lab frame K, and let A(τ) denote the
tensor as computed in the comoving frame Kτ . Then, since λ(τ) is the change of matrix
basis from K to Kτ , we have

A(τ) = λ(τ)−1Aλ(τ) = (exp(Aτ/c)λ̂)−1A exp(Aτ/c)λ̂ = λ̂−1Aλ̂ = A(0). (52)

(8) For all τ , we have λ(τ)A(τ) = Aλ(τ).

4.2. Uniformly Accelerated Frame

Two frames are said to be comoving at time τ if at this time, the origins of the two frames
coincide, their respective axes are parallel, and they have the same four-velocity.

We now define the notion of a uniformly accelerated frame.

Definition 2. A frame K ′ is uniformly accelerated if there exists a uniformly accelerated family
{Kτ (A, x̂(0), λ̂)} such that at every time τ , the frame Kτ is comoving to K ′.

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012009 doi:10.1088/1742-6596/437/1/012009

13



In light of this definition, we may regard our uniformly accelerated observer as positioned at
the spatial origin of a uniformly accelerated frame. This approach is motivated by the following
statement of Brillouin [26]: a frame of reference is a “heavy laboratory, built on a rigid body of
tremendous mass, as compared to the masses in motion.”

Our construction of a uniformly accelerated family should be contrasted with Mashhoon’s
approach [14], which is well suited to curved spacetime, or a manifold setting. There, the
orthonormal basis is defined by

c
dλµ(κ)

dτ
= Ã

(ν)
(κ)λ

µ
(ν), (53)

where Ã = Ãµν is an antisymmetric tensor. Notice that the derivative of each of Mashhoon’s
basis vectors depends on all of the basis vectors, whereas the derivative of each of our basis
vectors depends only on its own components. In particular, Mashhoon’s observer’s four-
acceleration depends on both his four-velocity λ(0) and on the spatial vectors of his basis, while
our observers’s four-acceleration depends only on his four-velocity. This seems to be the more
natural physical model: is there any a priori reason why the four-acceleration of the observer
should depend on his spatial basis? We show now, however, that the two approaches are, in
fact, equivalent.

The two approaches are equivalent if we identify Mashhoon’s tensor Ã as our tensor A
computed along the worldline: Ã = A(τ) = A(0). Then, by equation (48) and observation
(8) above, we have

c
dλµ(κ)

dτ
= Aµνλ

ν
(κ) = λµ(ν)Ã

(ν)
(κ),

which is (53).
Despite the equivalence of the two approaches, the four-acceleration of Mashhoon’s observer

does depend on his spatial basis. This is because the components of Mashhoon’s tensor Ã
are computed in the comoving frame. In this frame, the observer’s spatial basis must be
perpendicular to his four-velocity. In the inertial lab frame K, on the other hand, there is
no such restriction.

Unless specifically mentioned otherwise, we will always choose the lab frameK to be the initial
comoving frame K0. This implies that λ̂ = I. Moreover, we will always use the acceleration
tensor as computed in the initial comoving frame K0 and denote it by A instead of by Ã.

We now show that all of our solutions of equation (26) have constant acceleration in the
comoving frame. Let A be as in (23). Since u(0) = (1, 0, 0, 0)T , u(τ) = exp(Aτ/c)u(0), and
Aλ = λA, we have

a(τ) = Au(τ) = A exp(Aτ/c)u(0) = Aλ(τ)u(0) = λ(τ)Au(0) = λ(i)(τ)g(i). (54)

Thus, the acceleration of the observer in the comoving frame is constant and equals g.

We end this section by showing that if K ′ and K ′′ are two uniformly accelerated frames with
a common acceleration tensor A, then the spacetime transformations between K ′ and K ′′ are
Lorentz, despite the fact that neither K ′ nor K ′′ is inertial:

exp(λ̂Aλ̂−1τ/c)λ̂ = λ̂ exp(Aτ/c)λ̂−1λ̂ = λ̂ exp(Aτ/c). (55)

This implies, in particular, that there is a Lorentz transformation from a lab frame on Earth to
an airplane flying at constant velocity, since we are both subject to the same gravitational field.
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5. Spacetime Transformations from a K ′ to K
In this section, we construct the spacetime transformations from a uniformly accelerated

frame K ′ to the inertial frame K = K0. This will be done in two steps.

Step 1: From Kτ to K

First, we will derive the spacetime transformations from Kτ to K. The idea here is as follows.
Let x̂(τ) be the worldline of a uniformly accelerated observer. Fix an event X. Find the time τ
for which x̂(τ) is simultaneous to X in the comoving frame Kτ . Define the 0-coordinate in Kτ

to be y(0) = cτ . Use the basis λ(τ) of Kτ to write the relative spatial displacement of the event
X with respect to the observer as y(i)λ(i)(τ), i = 1, 2, 3. The spacetime transformation from Kτ

to K is then defined to be
xµ = x̂µ(τ) + y(i)λµ(i)(τ). (56)

Transformations of the form (56) have a natural physical interpretation: the vector sum of the
observer positioned at the origin of the comoving frame Kτ and the spatial coordinates of the
event as measured in Kτ . These transformations were also used in [14]. A similar construction
can be found in [27], in which the authors use radar 4-coordinates, and in [28], but in the less
general setting of (non-rotating) Fermi-Walker transport.

The above construction relies on the splitting of spacetime into locally disjoint 3D spatial
hyperplanes Xτ . This is indeed possible. Since Xτ is perpendicular to u(τ), there exist a
neighborhood of τ and a spatial neighborhood of the observer in which the Xτ are pairwise
disjoint. This insures that, at least locally, the same event does not occur at two different times.
Hence, the observer may uniquely define coordinates for any event within the locality restriction.
Thus, at least locally, the spacetime transformations from Kτ to K are given by (56).

Note then when K ′ is inertial (A = 0), one may split spacetime into globally pairwise disjoint
3D spatial hyperplanes. In this case, there are no locality restrictions, and the transformations
(56) are defined everywhere. We show now, in fact, that the transformations (56) extend the
Lorentz transformations.

The Lorentz transformations are normally written

xµ = Λµνy
ν , xµ = (x0 = ct, x1, x2, x3), (57)

where the 4×4 matrix Λ has constant entries. Note, however, that the columns λ(0), λ(1), λ(2), λ(3)
of Λ form an orthonormal basis of Minkowski space and that λ(0) = u, the four-velocity of the
observer. Rewriting (57) in terms of this basis, we obtain

xµ = y(ν)λµ(ν). (58)

Separating out the time component, we arrive at

x = y(0)λ(0) + y(i)λ(i), (59)

showing that the coordinates of an event in the lab frame K are the usual vector sum of the
observer positioned at the origin of the comoving frame Kτ and the spatial coordinates of the
event as measured in Kτ .

Step 2: From K ′ to Kτ

At this point, we invoke a weaker form of the Hypothesis of Locality introduced by Mashhoon
[29, 30]. This Weak Hypothesis of Locality is an extension of the Clock Hypothesis.

The Weak Hypothesis of Locality Let K ′ be a uniformly accelerated frame, with an
accelerated observer with worldline x̂(τ). For any time τ0, the rates of the clock of the accelerated
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observer and the clock at the origin of the comoving frame Kτ0 are the same, and, for events
simultaneous to x̂(τ0) in the comoving frame Kτ0, the comoving and the accelerated observers
measure the same spatial components.

Consider an event X. By step 1, the coordinates of X in K are x = x̂(τ0)+y(i)λ(i)(τ0), where
τ0 is the unique value of τ such that X and x̂(τ0) are simultaneous in the comoving frame, and
(y(0) = cτ0, y

(i)) are the coordinates of X in Kτ0 . Since x and x̂(τ0) are simultaneous in Kτ0 , the
Weak Hypothesis of Locality implies that the spatial coordinates y(i) coincide with the spatial
coordinates in K ′. Therefore, the spacetime transformations from K ′ to K are

x = x̂(τ) + y(i)λ(i)(τ), with τ = y(0)/c. (60)

We end this section by calculating the metric at the point y of K ′. First, we calculate the
differential of the transformation (60). Differentiating (60), we have

dx = λ(0)(τ)dy(0) + λ(i)(τ)dy(i) + y(i)
1

c

dλ(i)

dτ
dy(0).

Define ȳ = (0,y). Using (53) (but writing A for Ã, as is our convention), this becomes

dx = λ(0)(τ)dy(0) + λ(i)(τ)dy(i) + c−2(Aȳ)(ν)λ(ν)(τ)dy(0) . (61)

Finally, since
Aȳ = (g · y,y × cω), (62)

we obtain
dx =

((
1 +

g · y
c2

)
λ(0) + c−1(y × ω)(i)λ(i)

)
dy(0) + λ(j)dy

(j). (63)

Therefore, the metric at the point ȳ is

s2 = dx2 =

((
1 +

g · y
c2

)2
− c−2(y × ω)2

)
(dy(0))2 +

2

c
(y×ω)(i)dy

(0)dy(i) + δjkdy
(j)dy(k). (64)

This formula was also obtained by Mashhoon [14]. We point out that the metric is dependent
only on the position in the accelerated frame and not on time.

6. Examples of Uniformly Accelerated frames and Spacetime Transformations
In this section, we consider examples of uniformly accelerated frames and the corresponding

spacetime transformations.

6.1. Null Acceleration (α = 0, β = 0)
Since, in this case, |g| = |cω| and g ·ω = 0, we may choose g = (g, 0, 0) and cω = (0, 0, g). From
(23), we have

Aµν =


0 g 0 0
g 0 g 0
0 −g 0 0
0 0 0 0

 . (65)

Then

A2 =


g2 0 g2 0
0 0 0 0
−g2 0 −g2 0

0 0 0 0

 . (66)
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Thus, from (51), we have

λ(τ) = I +Aτ/c+
1

2
A2τ2/c2 =


1 + g2τ2

2c2
gτ/c g2τ2

2c2
0

gτ/c 1 gτ/c 0

−g2τ2

2c2
−gτ/c 1− g2τ2

2c2
0

0 0 0 1

 . (67)

The observer’s four-velocity is, therefore,

u(τ) = λ(0)(τ) =

(
1 +

g2τ2

2c2
, gτ/c,−g

2τ2

2c2
, 0

)
. (68)

His four-acceleration is

a(τ) =

(
g2τ

c
, g,−g

2τ

c
, 0

)
= gλ(1)(τ), (69)

which shows that the acceleration is constant in the comoving frame.
Integrating (68), we have

x̂(τ) =

(
cτ +

g2τ3

6c
,
gτ2

2
,−g

2τ3

6c
, 0

)
.

Using (67) and y(0) = cτ , the spacetime transformations (60) are

x0

x1

x2

x3


=



cτ + g2τ3

6c + y(1)gτ/c+ y(2) g
2τ2

2c2

gτ2

2 + y(1) + y(2)gτ/c

−g2τ3

6c − y
(1)gτ/c+ y(2) − y(2) g

2τ2

2c2

y(3)


. (70)

6.2. Linear Acceleration (α > 0, β = 0)
Without loss of generality, we may choose

Aµν =


0 g 0 0
g 0 cω 0
0 −cω 0 0
0 0 0 0

 , (71)

where g > cω > 0. In order to simplify the calculation of the exponent of A, we perform a
Lorentz boost

B =


g/α 0 −cω/α 0

0 1 0 0
−cω/α 0 g/α 0

0 0 0 1

 (72)

to the drift frame corresponding to the velocity

v = (c2/g, 0, 0)× (0, 0, ω). (73)

Since g > cω > 0, we have |v| ≤ c.
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In the drift frame, the acceleration tensor A becomes

Adr = B−1AB =


0 α 0 0
α 0 0 0
0 0 0 0
0 0 0 0

 ,

and leads to 1D hyperbolic motion. Hence,

λ(τ) = exp(Aτ/c) = B exp(Adrτ/c)B
−1

=


g2

α2 (cosh(ατ/c)− 1) + 1 g
α sinh(ατ/c) gcω

α2 (cosh(ατ/c)− 1) 0
g
α sinh(ατ/c) cosh(ατ/c) cω

α sinh(ατ/c) 0
−gcω
α2 (cosh(ατ/c)− 1) −cω

α sinh(ατ/c) −c2ω2

α2 (cosh(ατ/c)− 1) + 1 0
0 0 0 1

 . (74)

If ω = 0, we recover the usual hyperbolic motion of a frame. Thus, the previous formula is a
covariant extension of hyperbolic motion.

From the first column of (74), the observer’s four-velocity is

u(τ) = (
g2

α2
(cosh(ατ/c)− 1) + 1,

g

α
sinh(ατ/c),

−gcω
α2

(cosh(ατ/c)− 1) , 0). (75)

Hence, the observer’s four-acceleration is

a(τ) =

(
g2

α
sinh(ατ/c), g cosh(ατ/c),

−gcω
α

sinh(ατ/c), 0

)
= gλ(1)(τ), (76)

which shows that the acceleration is constant in the comoving frame.
To see how formula (75) extends 1D hyperbolic motion, we compute the proper velocity u.

Using (75), we have

u =

(
cg

α
sinh(ατ/c),

−gc2ω
α2

(cosh(ατ/c)− 1) , 0

)
.

Since dτ
dt = γ−1, and γ is the zero component of u(τ), we have

du

dt
=
du

dτ

dτ

dt
=

(
g cosh(ατ/c), −gcωα sinh(ατ/c), 0

)
g2

α2 (cosh(ατ/c)− 1) + 1
. (77)

If ω = 0, then (77) reduces to the 1D hyperbolic motion du
dt = g, where g = (g, 0, 0). If ω 6= 0,

then du
dt will also depend on ω. Thus, we have here an explicit example of the fact that F = dp

dt
if and only if ω = 0 (see the end of section 2).

Integrating (75), we have

x̂(τ) =

(
c2

α2

(
g2

α
sinh(ατ/c) + cωτ

)
,
c2g

α2
(cosh(ατ/c)− 1) ,

−c2gω
α2

( c
α

sinh(ατ/c)− τ
)
, 0

)
.

Using (74) and y(0) = cτ , the spacetime transformations (60) are

x0

x1

x2

x3


=



c2

α2

(
g2

α sinh(ατ/c) + cωτ
)

+ y(1) gα sinh(ατ/c) + y(2) cgω
α2 (cosh(ατ/c)− 1)

c2g
α2 (cosh(ατ/c)− 1) + y(1) cosh(ατ/c) + y(2) cωα sinh(ατ/c)

−c2gω
α2

(
c
α sinh(ατ/c)− τ

)
− y(1) cωα sinh(ατ/c)− y(2) c2ω2

α2 (cosh(ατ/c)− 1) + y(2)

y(3)


.

(78)
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6.3. Rotational Acceleration (α = 0, β > 0)
Without loss of generality, we may choose

Aµν =


0 g 0 0
g 0 cω 0
0 −cω 0 0
0 0 0 0

 , (79)

where cω > g > 0. In order to simplify the calculation of the exponent of A, we perform a
Lorentz boost

B =


cω/β 0 −g/β 0

0 1 0 0
−g/β 0 cω/β 0

0 0 0 1


to the drift frame corresponding to the velocity

v = (g, 0, 0)× (0, 0, 1/ω). (80)

Since cω > g > 0, we have |v| ≤ c.
In the drift frame, the acceleration tensor A becomes

Adr = B−1AB =


0 0 0 0
0 0 β 0
0 −β 0 0
0 0 0 0

 ,

and leads to pure rotational motion. Hence,

λ(τ) = exp(Aτ/c) = B exp(Adrτ/c)B
−1

=


g2

β2 (1− cos(βτ/c)) + 1 g
β sin(βτ/c) gcω

β2 (1− cos(βτ/c)) 0
g
β sin(βτ/c) cos(βτ/c) cω

β sin(βτ/c) 0
−gcω
β2 (1− cos(βτ/c)) − cω

β sin(βτ/c) −c2ω2

β2 (1− cos(βτ/c)) + 1 0

0 0 0 1

 . (81)

If g = 0, we recover the usual rotation of the basis about the z axis. Thus, the previous formula
is a covariant extension of rotational motion.

From the first column of (81), the observer’s four-velocity is

u(τ) =

(
g2

β2
(1− cos(βτ/c)) + 1,

g

β
sin(βτ/c),

−gcω
β2

(1− cos(βτ/c)), 0

)
. (82)

Hence, the observer’s four-acceleration is

a(τ) =

(
g2

β
sin(βτ/c), g cos(βτ/c),

−gcω
β

sin(βτ/c), 0

)
= gλ(1)(τ), (83)

which shows that the acceleration is constant in the comoving frame.
Integrating (82), we have

x̂(τ) =

(
−c2g2

β3
sin(βτ/c) +

(
g2

β2
+ 1

)
cτ,

c2g

β2
(cos(βτ/c)− 1) ,

c3gω

β3
sin(βτ/c)− c2gω

β2
τ, 0

)
.
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Using (81) and y(0) = cτ , the spacetime transformations (60) are



x0

x1

x2

x3


=



−c2g2
β3 sin(βτ/c) +

(
g2

β2 + 1
)
cτ − gy(1)

β sin(βτ/c) + y(2)cgω
β2 (1− cos(βτ/c))

c2g
β2 (cos(βτ/c)− 1) + y(1) cos(βτ/c)− y(2)cω

β sin(βτ/c)

c3gω
β3 sin(βτ/c)− c2gω

β2 τ + y(1)cω
β sin(βτ/c)− y(2)c2ω2

β2 (1− cos(βτ/c)) + y(2)

y(3)


.

(84)

7. Velocity Transformations
In this section, we obtain the transformation of a particle’s velocity in a uniformly accelerated

frame K ′ to its four-velocity in the initial comoving inertial frame K = K0.
A particle’s four-velocity in K is, by definition, dxµ

dτp
, where x(τp) is the particle’s worldline,

and τp is the particle’s proper time. However, from Special Relativity, it is known that the
proper time of a particle depends on its velocity. In addition, it is known that the rate of a
clock in an accelerated system also depends on its position, as occurs, for example, for linearly
accelerated systems, due to gravitational time dilation. As a result, the quantity dτp depends
on both the position and the velocity of the particle, that is, on the state of the particle.

Since we do not yet know the particle’s proper time, it is not clear how to calculate the
particle’s four-velocity in K directly from its velocity in K ′. To get around this problem, we
will differentiate the particle’s worldline by a parameter τ̃ instead of τp. For convenience, we
will choose τ̃ to be a constant multiple of the time. For example, we often choose τ̃ = cτ . The
same technique was used by Horwitz and Piron [15], using the four-momentum instead of the
four-velocity, thereby introducing the area known as“off-shell” electrodynamics.

We now introduce the following definition.

Definition 3. Let xµ be the worldline of a particle. The particle’s 4D velocity with respect to
the parameter τ̃ is denoted by ũ and is defined by

ũµ =
dxµ

dτ̃
. (85)

Note that the 4D velocity has the same direction as the four-velocity. In fact, the particle’s
four-velocity is

u =
ũ

|ũ|
, (86)

the normalization of ũ. In the particular case τ̃ = ct, where t is the time in an inertial frame,
then

|ũ| =
∣∣∣∣dxµcdt

∣∣∣∣ =
∣∣∣(1,

v

c

)∣∣∣ =

√
1− v2

c2
= γ−1. (87)

Consider now a moving particle in K ′. Let w̃(ν) = dy(ν)

dy(0)
denote the particle’s 4D velocity in

K ′ with respect to y(0) = cτ . We will calculate the particle’s 4D velocity in K at the point y
of K ′, with respect to cτ = cγ−1t, where γ corresponds to the observer’s velocity in K. Recall
from formula (61) that the differential of the spacetime transformations

x = x̂(τ) + y(i)λ(i) (88)
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is
dx = λ(0)(τ)dy(0) + λ(i)(τ)dy(i) + c−2(Aȳ)(ν)λ(ν)(τ)dy(0) . (89)

Thus, the particle’s 4D velocity in K at the point y is

ũ =
1

c

dx

dτ
=

dx

dy(0)
=
dy(ν)

dy(0)
λ(ν)(τ) + c−2(Aȳ)(ν)λ(ν)(τ) = (w̃(ν) + c−2(Aȳ)(ν))λ(ν)(τ) , (90)

where ȳ = (0,y). Thus, the 4D velocity ũ is the sum of the particle’s 4D velocity w̃ within K ′

and an additional 4D velocity due to the acceleration of K ′ with respect to the inertial frame
K, which we denote

ũa = c−2(Aȳ)(ν)λ(ν)(τ). (91)

Finally, from (86), the four-velocity of the particle in K is

u =
ũ

|ũ|
=

w̃ + ũa
|w̃ + ũa|

=
(w̃(ν) + c−2(Aȳ)(ν))λ(ν)(τ)

|w̃ + c−2Aȳ|
. (92)

Writing w̃(ν) = (1,w/c), the four-velocity in the 1 + 3 decomposition becomes

u =

(
1 + g·y

c2
, c−1(w + y × ω)

)√(
1 + g·y

c2

)2 − (w+y×ω
c

)2 . (93)

By the Equivalence Principle, we may interpret the zero component of the vector in the
numerator as the gravitational time dilation. This factor depends only on the translational
acceleration, which is the only cause of the change in time. The spatial part is the correction
due to the particle’s velocity in K ′ and the rotational velocity of K ′ with respect to Kτ .

We now show that substituting A = 0 in formula (90) yields the Einstein velocity addition
formula for inertial systems. Assume that K ′ is inertial, say with uniform 3D velocity
v = (v, 0, 0) with respect to the inertial frame K. Suppose a particle has 3D velocity w in
K ′. We wish to compute v ⊕E w, defined to be the particle’s 3D velocity in K. The particle’s
4D velocity in K ′ with respect to ct′, where t′ is the time in K ′, is w̃(ν) = (1,w/c). The comoving
frame of K ′ in this case is

λ(0) = γ(1, v/c, 0, 0), λ(1) = γ(v/c, 1, 0, 0), λ(2) = (0, 0, 1, 0), λ(3) = (0, 0, 0, 1). (94)

From (90), we get

ũ = w̃(ν)λ(ν) =

(
γ

(
1 +

w1v

c2

)
, γ

(
v + w1

c

)
, w2/c, w3/c

)
. (95)

Dividing c times the spatial part of ũ by the time component, we obtain the 3D velocity of the
particle in K as

v ⊕E w =

(
v + w1, γ−1w2, γ−1w3

)
1 + w1v

c2

=
v + Pvw + γ−1(I − Pv)w

1 + w1v
c2

, (96)

where Pvw denotes the projection of w onto v. This is the well-known Einstein velocity addition
formula (see [2], formula (3.7)).
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8. Time Dilation

We turn now to time dilation. We will compute the time dilation between the clock of a
uniformly accelerated observer located at the origin of K ′ and the clocks at other positions in
K ′. Let τp be the proper time of a particle positioned at y in K ′, with 4D velocity w̃ with

respect to y(0). Since the four-velocity (in K) of the particle is

u =
1

c

dx

dτp
=

1

c

dx

dτ

dτ

dτp
= ũ

dτ

dτp
, (97)

equation (86) implies that

dτ =
1

|ũ|
dτp = γ̃dτp, (98)

where γ̃ := 1
|ũ| is a function of w̃ and y, or, in short, of the state of the particle. The definition

of γ̃ for accelerated systems is analogous to the definition of γ for inertial systems. In fact, we
will see below that if A = 0, then γ̃ = γ. The factor γ̃ expresses the time dilation between the
particle at y and the observer at the origin of K ′. To obtain the time dilation of the particle with
respect to the inertial frame K, one must also multiply by the time dilation of the observer with
respect to K, which is the zero component of the observer’s four-velocity, explicitly obtained in
section 3.

We now express the time dilation (98) in the 1 + 3 decomposition. If a particle has velocity

w̃(ν) = dy(ν)

dy(0)
= (1,w/c) in K ′, then the time dilation between the particle and the observer is

given by

dτp =

√(
1 +

g · y
c2

)2
−
(

w + y × ω

c

)2

dτ , γ̃ =
1√(

1 + g·y
c2

)2 − (w+y×ω
c

)2 . (99)

Thus, the time dilation between the particle and the observer in K ′ combines the gravitational
time dilation (via the Equivalence Principle) and an additional time dilation due to the velocity
of the particle together with the rotational velocity of the system. The same formula was
obtained in [31]. Note that the expression underneath the square root must be nonnegative.
This limits the admissible values for y and is a manifestation of the locality of the spacetime
transformations from section 5. The same limitation was obtained by Mashhoon [14].

If A = 0, then

γ̃ =
1√

1− w2

c2

= γ(w),

expressing the time dilation due to the velocity of the particle in K ′, which is an inertial system
in this case.

For a clock at rest in K ′, the particular case ω = 0 gives a time dilation of 1 + g·y
c2

, which is

the known formula for gravitational time dilation. If g = 0, the time dilation is

√
1−

(y×ω
c

)2
,

which is the time dilation due to the rotational velocity of a rotating system.
The lower order terms of the expansion of the time dilation of (99) are

1 +
g · y
c2
− 1

2

(
w + y × ω

c

)2

= 1 +
g · y
c2
− 1

2

(y × ω)2

c2
− 1

2

w2

c2
− w · (y × ω)

c2
. (100)

The second term represents the gravitational time dilation. The third and fourth terms are the
transversal Doppler shifts due to the rotation of the system and the velocity of the particle,
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respectively. The last term is new in the setting of flat Minkowski space but was also obtained
recently by Grøn and Braeck ([32], equation (29)) in Schwarzschild spacetime.

We now obtain the physical meaning of ω in the acceleration matrix A. From (93), the
four-velocity of a rest point y in the comoving frame is

u =

(
1 + g·y

c2
, c−1(y × ω)

)√(
1 + g·y

c2

)2 − (y×ωc )2 , (101)

and the corresponding 3D velocity is

v =
dx

dt
=

y × ω

1 + g·y
c2
. (102)

This formula defines the angular velocity of a uniformly accelerated body. Note that for rest
points on the axis of rotation, we have dx

dt = 0. Also, if y belongs to the plane perpendicular

to g, then dx
dt = y × ω, the classical angular velocity. Multiplying both sides of (102) by γ, we

obtain

u =
dx

dτ
= γ̃(y × ω). (103)

The explanation of this formula is as follows. Measure the angular velocity of each point with
respect to a common clock, in this case, the clock at the origin. Then, since each point of the
rotating object must have the same period, the classical angular velocity must be multiplied by
the time dilation between the clock at the origin and the clock at the point in question.

9. The Acceleration of Rest Points in a Uniformly Accelerated Frame
We will show here that every rest point in a uniformly accelerated frame is also uniformly

accelerated, but the acceleration differs from point to point. Until now, our uniformly accelerated
observer has been located at the origin of a uniformly accelerated system K ′. In this section,
we consider an observer at rest at an arbitrary point y of K ′.

First, we show that this observer is also uniformly accelerated. To see this, note that the
coefficients of λ(ν)(τ) in the four-velocity (92) do not depend on τ . Hence,

c
du

dτp
= c

du

dτ

dτ

dτp
= cγ̃

du

dτ
= cγ̃u(ν)

dλ(ν)(τ)

dτ

= γ̃u(ν)Aλ(ν)(τ) = γ̃Au. (104)

This shows that the observer at y is also uniformly accelerated, with acceleration tensor γ̃A. In
the particular case ω = 0, the comoving frame at y coincides with the comoving frame of the
observer at the origin, and γ̃ = 1

1+g·y
c2

. Thus, in this case, g(y) = γ̃g. The same formula was

obtained by Franklin [33].
In the general case (ω 6= 0), we now find explicit expressions for the components g(y) and

ω(y) of the acceleration matrix A(y) of a rest point y. Assume, without loss of generality, that
ω is in the direction of the positive z axis and that y has spatial coordinates (r, 0, z) in the
comoving frame.

In order to compute the acceleration matrix A(y) for the observer at y, we need to calculate
the comoving frame at y. By (101), the 3D velocity v of the point y in the comoving frame
λ(τ) is

v =
ωr(0,−1, 0)

1 + g·y
c2

, γ =
1 + g·y

c2√(
1 + g·y

c2

)2 − (ωrc )2 = γ̃
(

1 +
g · y
c2

)
. (105)
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Hence, the initial comoving frame at the point y is Bv, where Bv is a Lorentz boost in the
direction of v, with v = |v| = ωr

1+g·y
c2

. Since the acceleration matrix for this observer is

A(y) = γ̃BvAB
−1
v , (106)

the comoving frame at y is

λ′(τ ′) = exp(A(y)τ ′/c)Bv = exp(γ̃BvAB
−1
v τ ′/c)Bv = Bv exp(γ̃Aτ ′/c)

= Bv exp(Aτ/c) = Bvλ(τ).

Hence, from (106), we obtain

A(y) = γ̃


0 γg1 − γ̃ω2r g2 g3γ

γg1 − γ̃ω2r 0 γcω − γ̃g1ωr/c 0
g2 −γcω + γ̃g1ωr/c 0 γ̃g3ωr/c
g3γ 0 −γ̃g3ωr/c 0

 . (107)

For a pure rotation (g = 0), we have g(y) = (−γ2ω2r, 0, 0) and ω(y) = (0, 0, γ2ω).

10. Acceleration Transformations in a Uniformly Accelerated Frame
Our next goal is to obtain the transformation of a particle’s acceleration in K ′ to its four-

acceleration in K. First, however, we will calculate the 4D acceleration ã = cdũdτ in K. Let

b̃ = cdw̃dτ . Using (90), we have

ã = c
dũ

dτ
= c

dw̃(ν)

dτ
λ(ν)(τ)+A

dȳ(ν)

dy(0)
λ(ν)(τ)+c(w̃(ν) +c−2(Aȳ)(ν))

dλ(ν)(τ)

dτ
= b̃+Aw̄+Aũ. (108)

The quantity d̃ := b̃+Aw̄ is the acceleration of the particle with respect to the comoving frame,
since this is the part of ã which treats λ(τ) as constant. We now write equation (108) in the
1 + 3 decomposition. Write b̃(ν) = (0,ap), where ap is the 3D acceleration of the particle in K ′.
Since, for any four-vector r = (r0, r), we have

Ar = (g · r, r0g + r× cω), (109)

we obtain

ã(ν) =

(
2g ·w +

1

c
g · (y × ω),ap +

(
1 +

g · y
c2

)
g + 2w × cω + (y × ω)× ω

)
. (110)

For a rest particle, we have w̃(ν) = (1, 0, 0, 0), and, in this case, formula (110) becomes

ã(ν) =

(
1

c
g · (y × ω),

(
1 +

g · y
c2

)
g + (y × ω)× ω

)
. (111)

Now we obtain the particle’s four-acceleration in K:

a = c
du

dτp
= c

du

dτ

dτ

dτp
= cγ̃

d

dτ
(γ̃ũ) = γ̃2ã− γ̃2(ã · u)u. (112)

Notice that
Aũ · u = Aũ · γ̃ũ = 0,
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since A is antisymmetric. Now, substituting ã = d̃+Aũ into (112), we have

a = γ̃2Aũ+ γ̃2d̃− γ̃2(d̃ · u)u = γ̃
(
Au+ γ̃(d̃− (d̃ · u)u)

)
. (113)

Let Pud̃ be the projection of d̃ onto u, and let d̃⊥ = (I − Pu)d̃. Then we can write the four-
acceleration as

a = γ̃2(Aũ+ d̃⊥) = γ̃Au+ γ̃2d̃⊥. (114)

The explanation of formula (114) is as follows. The acceleration of a rest point in the
comoving frame is Au, where u is the point’s four-velocity in K. The factor γ̃ is the time
dilation factor between the observer’s clock and the proper time of the particle and arises here
because we differentiated the four-velocity by τ instead of τp. The term γ̃Au accounts only

for the acceleration of K ′ with respect to K. Thus, we must add the term γ̃2d̃⊥ to account
for the acceleration of the particle inside K ′. In this term, the factor γ̃2 appears because we
differentiated twice by τ instead of τp. Since the four-acceleration is always perpendicular to the
four-velocity, and Au is perpendicular to u, the four-acceleration can contain only the component
of d̃ which is perpendicular to u. This completes the explanation of formula (114).

Consider the motion of a charged particle in a constant electromagnetic field F . We
decompose its motion into motion under a constant Lorentz force and acceleration produced
by the self-force due to the radiation. We consider the particle to be at the origin (γ̃ = 1) of
a uniformly accelerated system K ′, with acceleration tensor A = e

mF . The acceleration due
to the radiation will be considered as motion with respect to K ′. The self-force generates an
acceleration, which is known to be d̃ = τ0A

2u, where τ0 is a universal constant. Thus, in this
case, formula (113) coincides with the Lorentz-Abraham-Dirac equation ([9], equation S-10, page
259)

du

dτ
= Au+ τ0

(
A2u− (A2u · u)u

)
, (115)

which Rohrlich calls the correct equation of motion of a classical point charge.
If the acceleration due to the radiation is in the direction of the four-velocity, then d̃⊥ = 0.

In this case, the motion of a uniformly accelerated charge also satisfies equation (115). This
occurs, for example, in the particular cases of 1D hyperbolic motion (ω = 0) and pure rotation
(g = 0).

11. Summary and Discussion
The fully Lorentz covariant Relativistic Dynamics Equation (22) extends the 3D relativistic

dynamic equation F = dp
dt . We have shown that the standard 4D equation F = dp

dτ is only
partially covariant. To achieve full Lorentz covariance, we replaced the four-force F by a rank
2 antisymmetric tensor Aµν acting on the four-velocity.

In section 3, we obtained explicit solutions to (22) in the case of constant force. We call
the solutions uniformly accelerated motion. We have shown that uniformly accelerated motions
are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null
acceleration, the worldline (31) is cubic in the time. Linear acceleration (33) covariantly extends
1D hyperbolic motion, while rotational acceleration (36) covariantly extends pure rotational
motion. We have shown that if we keep the tensor A constant, the nonrelativistic limit (46)
of our uniformly accelerated motion is motion with constant linear acceleration. A different
nonrelativistic limit is obtained for rotational and general uniform acceleration by keeping the
components g and ω of the tensor A constant. This limit (47) describes motion under a Lorentz-
type force, which includes uniform rotation.

In [34], it is shown that a photon is uniformly accelerated. To which of the four types of
uniform acceleration does the photon belong? The two Lorentz invariants of the electromagnetic
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field of a photon are both 0, as in a constant, uniform electromagnetic field in the absence of
sources. Since motion in such a field is an example of null acceleration, we conjecture that the
motion of a photon is described by null acceleration.

Our results here are restricted to the particular case of constant force. In [35], the first author
considers the one-dimensional non-constant force case F = −kx.

In [11]and [34], the first author proved that the spacetime transformations between two
frames which are linearly uniformly accelerated with respect to each other must be one of
two types. Type I assumes Mashhoon’s Weak Hypothesis of Locality. The transformations of
section 6 are explicit examples of Type I. If the Weak Hypothesis of Locality fails, then there
exists a universal maximal acceleration amax, and the resulting transformations are Type II. It
still remains to compute the explicit Type II transformations corresponding to those of section
6. Since accelerations are bounded by am, the set of admissible accelerations form a bounded
symmetric domain known as a JC∗-triple. Thus, one could use the machinery of chapter 4 of
[21] to compute Type II transformations.

We have some preliminary results on the rigidity of a uniformly accelerated frame, including
a possible resolution of the Ehrenfest paradox. This paradox concerns a rotating disk. Let r
be the radius of the disk, measured in the lab frame, when the disk is at rest. When the disk
rotates, the radius is always perpendicular to the disk’s motion. Thus, an observer in the lab
frame will measure the radius of the rotating disk to be r. However, the circumference should
appear to be Lorentz-contracted by a factor of γ(ωr), where ω is the angular velocity of the

disk. This implies that the radius of the disk is r
√

1− (ωr)2

c2
, which is less than r. We plan to

present our resolution of this paradox in an upcoming paper.
We are also studying ways in which to incorporate radiation into our model.
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