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Abstract.

In most text books of mechanics, Newton's laws or Hamilton's equations of motion are
�rst written down and then solved based on initial conditions to determine the constants of
the motions and to describe the trajectories of the particles. In this essay, we take a di�erent
starting point. We begin with the metrics of general relativity and show how they can be used
to construct by inspection constants of motion, which can then be used to write down the
equations of the trajectories. This will be achieved by deriving a Hamiltonian-Jacobi function
from the metric and showing that its existence requires all of the above mentioned properties.
The article concludes by showing that a consistent theory of such functions also requires the
need for a universal measure of time which can be identi�ed with the �worldtime� parameter,
�rst introduced by Steuckelberg and later developed by Horwitz and Piron.

Max Born in his book �Natural Philosophy of Cause and Chance� gives a derivation of
Newton's laws of gravity from Kepler's laws of planetary motion noting that it �is the basis
on which [his] whole conception of causality in physics rests�([1]). In the spirit of that insight,
this essay will explore the metrics of general relativity and show how it is possible to use them to
derive both the constants of the motion and the particle trajectory in a gravitational �eld. We
will also show that a consistent development of the above mentioned approach requires the use of
a universal time parameter which can be identi�ed with the �worldtime� de�ned by Steuckelberg
([5])and further developed by Horwitz et al.([2]).

The key to this development will be rewriting the metric as an exact di�erential associated
with the Hamiltonian-Jacobi function. Such exact di�erentials can always be constructed by
noting that the inner product of any gradient vector ∇ψ(s) with a tangent vector to a curve ds
is always exact. More precisely, using spinor notation, a local tetrad can be constructed at any
point on the curve ([4]), with one-form d̃s = γadxa and its dual ∂̃sψ = γa ∂ψ∂xa such that

d̃s

dτ
.∂̃sψ =

1

2

{
d̃s

dτ
, ∂̃sψ

}
+

1

2

[
d̃s

dτ
, ∂̃sψ

]
(1)

=
~dψ

dτ
+
ds

dτ
∧

~∂Ψ

∂s
. (2)

Equations (1) and (2) can be identi�ed by noting that the anti-commutator and commutator

relationships in d̃s
dτ .∂̃sψ associated with the spinor tetrad, de�ne a dot product and a cross
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product respectively. Historically, equation (2) was �rst discovered by Grossman in 1841 and
then independently rediscovered by Cli�ord.

We say that ψ(τ) ≡ W is a Hamilton-Jacobi function if (1) is true and
[
d̃s
dτ , ∂̃sW

]
= 0, or

equivalently W is a Hamilton Jacobi function whenever dW = p∗adx
a is an exact di�erential,

where p∗a = ∂W (s)
∂xa = W ′pa, and pa = ∂s

∂x . Usually, po is denoted by −H and dW =
p∗1dx

1 + p∗2dx
2 + p∗3dx

3 − H∗dt. In particular, if s is a parameter denoting the length of a
smooth curve then [4]

dW = p∗1dx
1 + p∗2dx

2 + p∗3dx
3 −H∗dt i� ds = p1dx

1 + p2dx
2 + p3dx

3 −Hdt. (3)

It follows that Hamilton-Jacobi functions can be constructed at will starting from the metric.
Consider

ds2 = gijdx
idxj (4)

this is equivalent to
ds

dτ
ds = gij

dxi

dτ
dxj τ a parameter. (5)

Now choose W such that dW = ds
dτ ds then W will be a Hamilton-Jacobi function with

p∗j ≡
∂W (s)

∂xj
= gij

dxi

dτ
, τ a parameter. (6)

It is easy to check that this is consistent, and that for all i, j

p∗i = p′∗j
∂x′j

∂xi
and

∂p∗j
∂xi

=
∂p∗i
∂xj

. (7)

In the case of a speci�ed space (for example de�ned by a Schwarzschild or a Robertson-Walker
metric), the parameter τ can in principle be conveniently chosen to be the proper time associated
with a unit rest mass along a speci�ed geodesic passing through the origin and to which all other
time parameters can then be referred, although it does not have to be so. It can be identi�ed
with the �worldtime� de�ned by Horwitz et al.in [2]. Indeed, in the case of a particle moving with
constant speed along a geodesic there is an a�ne relationship between it and the proper time
along the curve. However, in the case of non-geodesic motion no such a�ne connection will exist
in general between the proper time and the worldtime. In practice, the choice of this universal
time is not so clear. A particle in motion within the Schwarzschild space of the earth, is in turn
also moving within the Schwarzschild metric of the sun which in turn is to a �rst approximation
moving within a solar system that is part of a speci�c galaxy moving along a geodesic associated
with the Robertson-Walker metric. The best that one can hope to do is invoke the principle of
equivalence and establish a universal time parameter with respect to some standard �laboratory�
frame de�ned with respect to the �xed stars. We shall postpone further discussion until the next
section.

1. Curves and constants of the motion

For the purpose of this article we shall con�ne ourselves to working with a four dimensional
pseudo-Riemannian manifold and/or Minkowski space, although many of the observations could
easily be extended to higher dimension spaces. Also, for what follows, we will continue to work
with an arbitrary parameter τ but will simplify notation by using p for p∗. Our interest is
to classify Hamilton-Jacobi functions W = W (s) associated with speci�c forms of the metric
ds = p1dx

1 + p2dx
2 + p3dx

3 − Hdt, where xi are generalized coordinates. Three speci�c cases
arise:
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(1) All of the pi are constant.
(2) Some of the pi are constant
(3) None of the pi are constant.
All three cases apply to all metrics. However, in practise the speci�c solutions chosen and
the coordinate system used usually re�ect the problem under investigation. In either case, the
simplest possible solutions occur when all the pi are constants, although these are not usually
the only solutions and identifying them as constants depends on the coordinate system used. For
example, the di�erential

dW (s) = γ(s)(2xydx+ x2dy) (8)

= pxdx+ pydy (9)

is an exact di�erential for all parameterizations x = x(s), y = y(s),where γ(s) = γ(x2y) is
smooth. Also, if we require that they are both constant, they pick out a very speci�c family
of curves (one for each k) associated with x2 = 2kxy. On the other hand, rewriting the above
metric in polar coordinates gives

dW (s) = γ(s)(2xydx+ x2dy) (10)

= γ(s)[(3r2 cos2 θ sin θdr + (r3 cos3 θ − 2r3 cos θ sin2 θ)dθ] (11)

= prdr + pθdθ (12)

Once again, it is easy to check that ∂pr
∂θ = ∂pθ

∂r . However, the previous requirement that

px = 2γxy = k, a constant,

now precludes that

pr = 3γr2 cos2 θ sin θ =
3

2
k cos θ

is constant, except in the trivial case when r and θ are both constants and vice versa. So the
choice of coordinate systems is important.

Secondly, it is worth recalling that if ṗi = 0 for all i then this implies motion along a geodesic
only if the coordinate system (xi) forms a tetrad. In other cases, motion will be along some
other type of curve. This leads to the following de�nitions and lemma [6](p44).

De�nition 1 If s = s(τ) where τ is a parameter and

2fi =
d

dτ

(
∂ṡ2

∂ẋi

)
− ∂ṡ2

∂xi

then fi = fi(τ) is called the acceleration tensor with respect to τ .

Lemma 1 Let ds2 = gijdx
idxj, with ds an exact di�erential and pi(τ) = gij ẋ

j = ∂s
∂xi
ṡ. If in

phase space ∂ṡ2

∂xi
= 0 then ṗi(τ) = 0 i� fi = 0.

Proof:

2fi ≡
d

dτ

(
∂ṡ2

∂ẋi

)
− ∂ṡ2

∂xi
. (13)

But ∂ṡ2

∂xi
= 0 implies d

dτ

(
∂ṡ2

∂ẋi

)
= 2ṗi from the de�nition of pi. Therefore, ṗi = 0 i� fi = 0. The

result follows.�
In practice, as we shall see below, the lemma above permits one to solve for those curves and

determine those potentials for which momentum is conserved. It also allows us in special cases to
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read o� the constants of the motion by inspection. Also, in the event that not all pi are constant,
then as noted above, the requirement that s be a Hamilton-Jacobi curve in a given coordinate
system allows one to determine all possible motions not involving spin or vortex motion.

Example 1: As an application of the above theory, we begin by considering planar motion in
Minkowski space with metric

ds2 = dr2 + r2dθ2 − c2dt2. (14)

This can be written with respect to a parameter τ by

ds

dτ
ds =

dr

dτ
dr + r2

dθ

dτ
dθ − c2 dt

dτ
dt. (15)

The requirement that fθ = 0 and ft = 0 (see Def. 1) implies from the lemma that pθ = r2θ̇ and
pt = −c2ṫ are constants of the motion along the curve s(r, θ, t) = h(r) + k1θ + k2t with respect
to the parameter τ , where s(τ) is a Hamilton-Jacobi function, h a function and ṗi(τ) = ∂s

∂xi
ṡ.

Two cases are of particular interest:
(1) τ = s and h(r) = kr (equivalent to ṙ = constant 6= 0)
(2) τ = s and h(r) = k (equivalent to ṙ = 0).
In the �rst case

fr(s) = −rθ̇2 = −(r2θ̇)2/r3 = −k2/r3

de�nes an inverse cube law of motion. Moreover, both ṙ and r2θ̇ are non-zero constants and
consequently are proportional to each other. It follows that in general the trajectory of a particle
subjected to this force in Minkowski space obeys the equation ṙ = εr2θ which is equivalent to
k3r − εrθ = 1. In the second case r = constant. This de�nes circular motion.

Finally, if in addition to fθ = ft = 0, we restrict ourselves to purely geodesic motion given by
taking fr = 0, then it is easy to check that the only possible trajectory is given by θ = constant
which is equivalent to straight line motion in <2.

It should be clear that the form of the metric is key to associating speci�c curves with speci�c
constants of the motion. In the above example, we derived the general form of the trajectories
associated with the conservation of angular momentum ṗθ = r2θ. However, one might seek curves
in the same metric space associated with other constants. For example, if we de�ne φ̇ = rθ̇ then
the metric takes the form

ds2 = dr2 + dφ2 − c2dt2 (16)

on the Minkowski manifold M(r, φ, t). The geodesic equations are given by fr = fφ = ft = 0

or equivalently ṙ = kφ̇. Substituting rθ̇ for φ̇ and solving for r 6= constant, gives the trajectory
r = Aekθ on the manifold M(r, θ, t)\{(0, 0)}, while in the case ṙ = 0 we obtain the circle r = ro,
ro a constant. In other words, the requirement that rθ̇ be a constant of the motion (and not
r2θ̇) determines the family of trajectories

F = {r = Aekθ|A, k are constant}
⋃
{r = ro|ro a constant}.

Example 2: As a second example consider the metric

ṡds =
lṙ

sin θ
dr + r2θ̇dθ − c2ṫdt, (17)

derivable from Kepler's �rst and second laws of planetary motion which state that planets move
on ellipses given by l/r = 1 + ε cos θ, with constant angular momentum. The Ricci curvature
tensor Rij 6= 0 and consequently the space is not �at. For the purpose of this essay, let us begin
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with the metric and require that ṡ be an exact di�erential. Note that pt = −c2 ∂s∂t in terms of

phase space is independent of r and θ. It follows from the lemma that ṫ is a constant of the
motion if ft = 0. However, the lemma does not apply to both pr = lṙ

sin θ and pθ = r2θ̇, except in

the case of θ̇ = 0 (a geodesic) and therefore precludes these from being constants of the motion
along other geodesics. However, there are other trajectories for which they are constants of the
motion, determined by the equation pr = εpθ or equivalently that lṙ

sin θ = εr2θ̇. Integrating out
gives the equation of a conic for an inverse square law of motion, which is Kepler's �rst law of
motion.

Example 3: The same techniques can also be used to identifying the constants of the motion
associated with all metrics in which the equations of motion obey the Hamilton-Jacobi equation.
Consider the Schwarzschild space with a metric of the form

ds2 = B(r)dt2 −A(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (18)

For ft = 0 and fφ = 0, it follows from the lemma that in phase space

B(r)ṫ = k1, r
2 sin2 θφ̇ = k2.

Also,
∂r2θ̇

∂φ
=
∂r2 sin2 θφ̇

∂θ
= 0

implies θ = k3. Taking k3 = π
2 , the Hamilton-Jacobi function takes the form s(r, θ, φ, t) ≡

k1t + k2 + k3φ + h(r) with pt, pθ, pφ being constants of the motion, and h a function such that
∂h
∂r = −A(r).

The three constants are well known and can be easily shown to be associated with geodesic
motion. To fully obtain a geodesic, we would also require that fr = 0, in addition to ft, fθ and
fφ already given above. Also by noting that any two constants can be related by a constant of
proportionality ε, it follows that if ft = fφ = 0 then any trajectory for such a motion must obey

the equation k1 = εk3 or equivalently B(r)
r2

= εdφdt .

Example 4: Similarly in the case of the Robertson-Walker metric

ds2 = dt2 −R2(t)

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

}
(19)

there exists trajectories for which ṫ, R2(t) ṙ
1−kr2 , R

2(t)r2φ̇ and θ are constants of the motion, and
in this case a generalized �rst law of Kepler would require that galaxies move on trajectories
given by ṙ

r2(1−kr2) = εφ̇. This can be integrated out, using partial fractions, to give the family of
curves

−εrφ+ k5r +
r
√
k

2
ln

(
1 +
√
kr

1−
√
kr

)
= 1. (20)

These curves are not geodesics, since only R2(t)r2φ̇ = constant and θ = constant satisfy the
geodesic equation ft(s) = 0.
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2. Universal time

As previously noted, the requirement that dW (τ) ≡ ds
dτ ds be a Hamilton-Jacobi function such

that

pj(τ) =
∂W (τ)

∂xj
= gij

dxi

dτ
, τ a parameter

begs the question as to how we should determine the parameter τ . On the one hand it does
not matter in that one can easily pass from one parameter τ to another by means of the
transformation

p(τ ′) =
dτ

dτ ′
p(τ). (21)

Note the similarity between this and coordinate transformations of the form

p∗i = p′∗j
∂x′j

∂xi
.

This latter case applies when we always use the same proper time s/c. Indeed, if we were con-
�ned to a single curve then the proper time would be the most convenient. However, things are
more complicated as soon as we pass over into higher dimensions and try to seek a consistent
parametrization that applies to all curves. In this case, we will be guided by equation (21).
Either way, as we shall see below, it will be necessary to de�ne a universal time scale and basis
within the space in order to have a common and consistent parametrization. We now explore
this more in depth.

Consider for example the di�culty in trying to coherently compare the two straight lines,

ds2 = c2dt2 and ds2 = c2dt2 − dx2 = c2dt2(1− tanh2 φ) = c2dt2 sec2 θ

de�ned over the two dimensional Minkowski space M(t, x). Using the proper time s/c as a
parameter and φ = iθ a constant, the �rst can be parameterized in terms of s by t = s/c and
de�nes the proper time for the curve, while the second line will have a parametrization given by
t = sec(θ)s/c. Unless θ = 0, a clear contradiction arises on equating s or t in each equation.
To avoid this paradox there are two choices to make: either we rewrite the equations of the two
curves as s = tc and s′ = c sec(θ)t (s 6= s′) or as s = tc and s = c sec(θ)t′ (t 6= t′). Both choices
are valid and should never be confused.

At the core of the distinction is the di�erence between having two di�erent lines or
parameterizations with respect to the same reference frame versus the same line de�ned with
respect to two di�erent references frames. Equivalently it is the di�erence between parameterizing
the two curves with respect to the same local time (common reference frame) or parameterizing
with respect to the same proper time. The advantage of the latter case is that one can easily
pass from one curve to another by means of a Lorentz transformation, if they are of the same
type. A simple rotation of the axes will transform one curve into another. This is Weinberg's
approach. It re�ects the fact that one is examining the same phenomena from two di�erent
references frames ([7]).

However, in the event that two particles are moving along the same curve (geodesic) but with
di�erent speeds (not to mention accelerations) this second perspective is inadequate. Indeed, the
requirement that ds = ds′ would be equivalent to saying that both particles have proper speed
c by de�nition (albeit de�ned with respect to two di�erent references frames) although they
are clearly moving at di�erent speeds from the perspective of the same reference frames. From
this perspective, the equations ds2 = c2dt2 and ds′2 = c2 sec2 θdt2 can be viewed as two di�erent
parameterizations along the same curve re�ecting the di�erent speeds of the particles with respect
to the laboratory frame. The problem becomes even more pronounced when we try to compare
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the velocities and accelerations between two particles moving on totally di�erent curves. In such
cases, unless the problem is formulated with respect to the same basis {cdt, dx, dy, dz} it risks
being ill-posed.

In terms of the general theory, consider two curves de�ned with respect to a basis {xi} and a
parameter τ such that

ds

dτ
ds = pi(s)dx

i,
ds′

dτ
ds′ = p′i(s

′)dxi

on a pseudo-Riemannian manifold. Since both s and s′ are considered to be Hamilton-Jacobi
functions the existence of pi and p

′
i are guaranteed by equation (6). Let us further assume that

the �rst curve is both a geodesic and a unit speed curve when parameterized with respect to s,
while the second curve parameterized with respect to s is an arbitrary non-unit speed curve. In
other words, motion along the non-unit curve is de�ned in terms of a tetrad {xi} which can be
Fermi transported along the unit geodesic. Transposed to the laboratory rest frame these can
be expressed by the equations

ds2 = c2dτ2, ds′2 = p′τdτ
2,

with p′t = cds
′

ds . By construction these curves cannot be transformed one into another by means of
a Lorentz transformation. Their corresponding proper times are di�erent. However, it is possible
to de�ne one proper time as a non-trivial function of the other. To do this in an e�ective and
consistent way it is necessary to establish a universal measure of time, a standard time to which all
others can be compared. In theory, by the Principle of Equivalence it is su�cient to parameterize
any curve in terms of a local unit speed geodesic proper time and use this as a universal time
parameter. In practice, the only way one can know if this has been successful is by comparing
the time calibrations of the standard laboratory clock with a universally pre-established time
standard. It can be identi�ed with the worldtime de�ned by Horwitz et al. in [2].

3. Mass and momentum

Thus far the role of mass in our equations has been ignored and the above discussion related to
di�erent parameterizations of a curve suggests that the concept of rest mass will also be a�ected
by such changes. Returning to equation (1), we see that for the curve xi = xi(s) de�ned with

respect to a local tetrad, the functionW (s) = mos is a Hamilton-Jacobi function with ∂s
∂xi

= dxi

ds ,

where s/c is the proper time along the curve. It follows that pi = ∂W
∂xi

= moc
dx
ds . However, if the

parameter is changed to s′ then

pi = moc
dxi

ds
= m(s′)c

dxi

ds′
, with m(s′) ≡ mo

ds′

ds
(22)

which means the momentum remains invariant under a change of parameter.
In particular, in the case of motion de�ned with respect to two di�erent parameters s and s′

respectively, the four momentum moc in the rest frame associated with s will will transform into

moc = moc
ds

ds′
ds′

ds
= m′oc

ds

ds′
(23)

in the frame associated with s′. Equivalently, the rest mass de�ned with respect to two di�erent
parameterizations of a curve may be di�erent. For example, if s′ = t the local time then the
change in mass will correspond to the usual mass change under Lorentz transformations. If
s′ = 2.2s then a mass measurement in kilos in the s frame would correspond to the same
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measurement in pounds in the s′ frame. It also follows from equation (23) that if s′/c is the
worldtime parameter de�ned in [3] then

ds2 =
m2

M2
ds′2, mo = m, M = m(s′)

corresponds to equation (14) in [3] and m2 = M2 de�nes the so called �mass shell� condition.
Indeed, the mass will be the same under any change of basis that does not a�ect the curve

parameter. If ds = ds′ then m(s′) ≡ cdx
i

ds = mo. In other words, the rest mass along any
geodesic measured with respect to a standard clock and length will always be the same. Real
di�erences will only occur in a gravitational �eld.

On a �nal note, if we return to equation (22), then the conservation of momentum requires

ds

m(s)
=

ds′

m(s′)
,

which implies that ds2

m2(s)
is invariant both under general coordinate transformations given by

equation (7) and under changes of parameter given by equation (21) and it uni�es the two dif-
ferent perspectives as outlined in the previous section. For example, it allows one to pass from
the worldtime parameter to a proper time parameter in one step.

4. Conclusion

In the spirit of Born's observation, there is something special about Hamilton-Jacobi functions.
Not only can they be used to derive Hamilton's equations but they allow us to identify equations
and constants of motion as well as a new relativistic invariant ds

m(s) associated with the motion,

with the rest mass mo being meaningfully de�ned only if a �worldtime� parameter is introduced.
They also determine the trajectories in general for natural motions.

In that regard, it should be recalled that if s(τ) is a Hamilton-Jacobi function then so also
are smooth functions W (s) and more sophisticated motions will require their use. Indeed, in
the context of the overall �eld of mechanics the Hamiltonian-Jacobi functions with gradient ∇W
serve as gauge terms for the more general motion which can be written (see equation (2)) as

d̃s

dτ
.∂̃sψ =

dW

dτ
+ ~A.

ds

dτ
+ ~A ∧

~ds

dτ
. (24)

But this is a discussion for another day.
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