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Joseph Fourier, 25 Av. des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France

Abstract. Alpha clustering and α condensation in lighter nuclei are presently strongly and
increasingly discussed in the literature both from the experimental and from the theoretical side.
A discussion of the present status of the theory as well as outlooks for future developements
will be presented.

1. Introduction

For about ten years, since the idea of the possible existence of α condensate type of states in
nα nuclei was formulated for the first time [1], many exciting new theoretical and experimental
results have been produced. In this contribution, we would like to assess where we stand and
what possible future extensions may be.

Let us start with the reminder that nuclear clustering and, in particular, α clustering would
not exist, if we did not have in nuclear physics four different types of fermions (proton/neutron
spin up/down), all attracting one another. We should be aware of the fact that this is a rather
singular situation in fermionic many-body systems. However, the possibility of future trapping
of four different kinds of cold fermionic atoms may open a new field of cluster physics with similar
features. In a mean field description of an isolated α particle (which, with, e.g., Skyrme forces,
gives reasonable results, if the c.o.m. motion is treated correctly) the four fermions can occupy
the lowest (0S) level. Were there only neutrons, only two of them could be in the 0S-level, and
the other two neutrons would have to be in the energetically very penalising 0P-state. That is
why α particles exist, tetra-neutrons not. The ensuing fact is that α particles are very strongly
bound (E/A ∼ 7 MeV), almost as strongly as the most strongly bound nucleus, which is 56Fe
(E/A ∼ 8 MeV). In addition the first excited state of the α particle (∼ 20 MeV) is by factors
higher than that of any other nucleus. The α particle can, therefore, be considered as an almost
inert ideal bosonic particle. As we will see in the discussion below, in spite of its strong binding,
α particle condensation can only exist in the so-called BEC (Bose-Einstein Condensation) phase,
which implies low density. There is no analogue to the BCS phase of pairing where the Cooper
pairs can have very large extensions, strongly overlapping with one another, still being fully
antisymmetrised. This is the reason why α condensation can only be present at low densities
where the α particles do not overlap strongly. (This holds, if the system consists of protons and
neutrons and α’s. If other clusters as t, 3He, d are around, the situation may change, see below.)
These considerations apply to nuclear matter as well as to finite nuclei. The Hoyle state in 12C
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which can, to a good approximation, be described as a product of three α particles occupying
all the 0S state of their bosonic mean field has a density which is by a factor 3-4 lower than the
one of the ground state of 12C. In the ground state there exist α-type of correlations but there
is no condensation phenomenon. Let us start our considerations with infinite matter.

2. Alpha particle condensation in infinite matter

The in-medium four-body equation can be written in the following form

(Eα,K− ε1− ε2− ε3− ε4)Ψ
α,K
1234 = (1− f1− f2)v121′2′Ψ

α,K
1′2′34+(1− f1− f3)v131′3′Ψ

α,K
1′23′4+ ... (1)

In total, there are six terms coming from permutations. The εi are kinetic energies plus mean
field corrections; v1234 are the matrix elements of the two-body interaction, and fi is a Fermi-
Dirac distribution of the uncorrelated nucleons accounting for phase space blocking. Repeated
indices are summed over and index numbers comprise momenta and spins. The above equation
describes one quartet in a gas of uncorrelated nucleons at temperature T . The analogous two-
body equation can be used to determine the critical temperature Tc for the onset of superfluidity
or superconductivity, where Tc has to be determined so that the eigenvalue comes at two times
the chemical potential µ. This is the famous Thouless criterion of BCS theory. In analogy with
pairing, one has to find the critical temperature Tα

c so that the eigenvalue of the four-body
equation (1) comes at 4µ. The in-medium four-body equation is very difficult to solve. None
the less, the solution has been found employing the Faddeev-Yakubovsky equations and using
the Malfliet-Tjon bare nucleon-nucleon interaction which yields realistic nucleon-nucleon phase
shifts and properties of an isolated α particle [2]. To simplify the problem, we made in addition
a very easy-to-handle variational ansatz of the four-body wave function in (1). It consists of a
mean field ansatz for the α particle projected on good total momentum. In momentum space
this is

Ψ1234 ∝ δ(K− k1 − k2 − k3 − k4)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) (2)

Inserting this ansatz into (1), one obtains a nonlinear HF-type equation for the S-wave function
ϕ(k). Of course, for quartet condensation, we choose K = 0. With the mean field ansatz (2),
one cannot use a bare force. We adjusted an effective separable force with two parameters
which are chosen to reproduce the binding energy and radius of the free α particle. The full
Faddeev-Yakubovsky solution of (1) is shown for symmetric matter in Fig. 1 (crosses). We see

Figure 1. Critical temperatures for α particle and deuteron condensation in symmetric nuclear
matter as a function of µ (a) and density n(0) (b).

that the ansatz (2) which very much eases the otherwise difficult solution of (1) works very well
(continuous line). Also shown is the critical temperature for deuteron condensation. The striking
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feature is that α particle condensation abruptly breaks down already at very low density which
approximately coincides with the point where the α’s start to overlap appreciably (this fact was
already found in [3] using a somewhat different variational ansatz for Ψ1234). On the other hand
deuteron condensation goes on up to very high densities and the limit is only triggered by the
range of the effective force (which has been readjusted to reproduce the deuteron properties).
This is so for symmetric nuclear matter. For strong asymmetry, deuteron condensation breaks
down earlier than α condensation because the α particle according to its much stronger binding
is less sensitive to asymmetry [4]. This is the afore-mentioned phenomenon that α condensation
only exists in the BEC phase, i.e., at low density, whereas the deuteron continuously goes from
negative to positive chemical potentials where for the latter the deuterons turn into large-size
Cooper pairs. More on this can be found in [2, 3]. We should mention that our calculation of Tα

c

is only reliable rather close to the breakdown point. For lower densities, Tα
c should join the one

for condensation of ideal bosons (α’s). To describe this feature, one should extend our theory
to the so-called Nozières–Schmitt-Rink (NSR) theory [5] for pairing, see also [6], to α particle
condensation. This, however, has not been worked out so far and remains a task for the future.

At zero temperature, there are many α’s which go into the condensate phase. For this, we
have to set up an approach analogous to the nonlinear BCS theory. Equation (1) corresponds
to the linearised version and only describes one α particle in an otherwise uncorrelated gas (at
finite T ) of fermions. In finite nuclei, there may exist such a situation even at zero temperature.
This is the case of 212Po which can, to a certain extent, be viewed as an α particle sitting on top
of the doubly magic core of 208Pb which can be well described by a HF mean-field approach,
i.e. a Fermi gas in a container. We will come back to this later when we discuss finite nuclei.

After having considered the linearised version of the equation for the quartet order parameter
at the critical temperature, let us now try to write down, in analogy to the BCS case, the fully
non-linear system of equations for the quartet order parameter. To clearly see the analogy to
the BCS case, let us repeat the latter equations in a slightly unusual way. The pairing order
parameter, allowing for non-zero c.o.m. momentum of the pairs, reads

(εk1 + εk2)κk1k2
+ (1− nk1 − nk2)∆k1k2

= 2µκk1k2
(3)

where ∆k1k2
=

∑
vk1k2k1′k2′κk1′k2′

and κk1k2
= 〈BCS|ck1

ck2
|BCS〉 = uk1

vk2
is the usual pairing

tensor (with spin indices suppressed) and nk = v2k = 1 − u2k are the BCS occupation numbers.
The εk’s are, as before, the kinetic energies, eventually including a mean field correction. The
occupation numbers can be obtained from the Dyson equation

Gω
k = G0

k +G0
kM

ω
k G

ω
k , (4)

with Mk = ∆k∆
∗

k/(ω+ εk) the BCS mass operator where ∆k is the diagonal part of the gap for
cases where the pairs are at rest. From the single-particle Green’s function, obviously we can
calculate the occupation numbers thus closing the typical BCS self-consistency cycle. Inspired
by the BCS case, we then write for the quartet order parameter [see (1)]

(4µ− ε1 − ε2 − ε3 − ε4)κ1234 = (1− n1 − n2)v121′2′κ1′2′34 + (1− n1 − n3)v131′3′κ1′23′4 + ... (5)

with κ1234 = 〈c1c2c3c4〉. Again, we have to close the equation with the Dyson equation for the
occupation numbers. However, the mass operator now contains the quartet order parameter

Mα
1 =

∑

234

∆1234[n̄
0
2n̄

0
3n̄

0
4 + n02n

0
3n

0
4]∆

∗

1234

ω + ε2 + ε3 + ε4
δ(k1 + k2 + k3 + k4) (6)

with n̄0 = 1 − n0 and n0i being the uncorrelated Fermi function, i.e., the Fermi step and
∆1234 =

∑
V123′4′κ3′4′34 where V1234 is an effective coupling vertex linking the single-particle
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motion to the order parameter (for more details and derivation, see [7]). Before trying to solve
this equation, let us discuss the differences between the pairing and the quartet case. The first
thing which strikes is that the three ‘holes’ only have to have total momentum k2+k3+k4 = −k1

and, therefore, we have a remaining sum over momenta. In the pairing case with only one ‘hole’,
there is no sum. Furthermore in the pairing case the hole propagator has no phase space factor
because the ‘forward’ and ‘backward’ going parts add up to one: n̄0 + n0 = 1. In the quartet
case there are three hole propagators and the corresponding sum of phase space factors does not
add up to one, i.e. n̄01n̄

0
2n̄

0
3 + n01n

0
2n

0
3 6= 1 ! This makes a dramatic difference from the pairing

case. In order to understand this a little better, let us compare the level density of a single hole
with the one of three holes:

g1h(ω) =
∑

k

[n̄0k + n0k]δ(ω + εk) =
∑

k

δ(ω + εk) (7)

g3h(ω) =
∑

k1k2k3

[n̄0k1 n̄
0
k2
n̄0k3 + n0k1n

0
k2
n0k3 ]δ(ω + εk1 + εk2 + εk3) (8)

The 3h level density is shown in Fig.2. We see that for positive µ there is a striking difference
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Figure 2. 3h level densities for negative and positive chemical potentials, respectively. Note
that on the horizontal axis, the origin corresponds to µ = 0.

from the 1h level density. At positive µ, g1h(ω = µ) is obviously finite (not shown), whereas
g3h(ω = 3µ) goes through zero. This is because phase space constraints and energy conservation
cannot be fullfilled simultaneously at the Fermi surface in the latter case as is easily verified.
That is, in the quartet case, exactly at the point where the correlations should be built up,
namely at the Fermi level, there is no level density! As a consequence, no quartet condensation
is possible for positive µ. On the contrary, for negative µ, n0 = 0 and thus the phase space factor
in the case of g3h is also equal to one and then there is no qualitative difference from the 1h case.
This explains in a natural way why quartet condensation is not possible at positive chemical
potentials. It is, by the way, well known that any mp–nh level density, besides the single-particle
case, goes through zero at the Fermi level. For example, the origin of fermions at the Fermi energy
having an infinite free mean path stems from the fact that the 2p-1h (2h-1p) level density is zero
at the Fermi level and that is the equivalent to the imaginary part of the optical potential being
zero at that energy. Also the 2p-2h level density, which plays an important role for the damping
of zero sound modes, is zero at zero frequency. As first pointed out by Landau, it approaches
zero as ω2. In conclusion, for positive µ only pairing survives, whereas quartetting breaks down;
it only exists in the BEC phase with negative µ. The situation may be different when other light
clusters are present, i.e. in a mixed gas of, e.g., nucleons, tritons (3He) and deuterons. Then a
nucleon with momentum k may, eventually, directly pair with, e.g., a triton of momentum −k
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(or the other way round), rather similarly to the standard pairing situation apart from the fact
that now two fermions with different masses have to pair up. Similar considerations hold for
the pairing of two deuterons (pairing of ‘bosons’). In compact star physics such situations may
exist when the star is cooling down. The extension of our theory to this scenario is a task for
the future. The full solution of the nonlinear set of equations (6) and (7) is again very much
eased in taking for the order parameter the factorisation ansatz (2). The most interesting result
is that the occupation number, e.g., for µ around zero is far from being close to saturation. At
k = 0 it is only approximately nk=0 ∼ 0.30. This scenario is analogous to pairing in the BEC
regime. More results can be found in [7].

3. Finite Nuclei

As we know from pairing, a direct observation of condensation phenomena is only possible
in finite nuclei. Of course, in such small systems, there cannot exist a condensation in the
macroscopic sense. Nevertheless, as we know very well, only a handful of Cooper pairs suffices
to show clear signatures of pairing in nuclei. For α particle condensation it is the same story.
We can only expect that there exists about a handful of α particles, essentially in lighter nα
nuclei, in a gaseous phase at low density. It is, indeed, surprising that such states at low density
with about ρ = ρ0/3−ρ0/4 with ρ0 the density at saturation do exist as quite long lived excited
states in those nuclei. The most famous example is the Hoyle state in 12C at 7.65 MeV, just
about 300 keV above the 3α threshold. We will not dwell much on the successful theoretical
description of this state (and others, e.g., in 16O) with the THSR wave function [1], since this
has been presented in the recent literature a great number of times [8]. Let us only make a
couple of remarks. The THSR wave function is schematically written for a finite number of
quartets as

ΨTHSR
nα = A[ΦαΦα...Φα] (9)

where the single-α wave function Φα depends on four spatial coordinates, the spin-isospin part
being suppressed. This wave function is fully antisymmetrical due to the antisymmetriser A and
is analogous to the number-projected BCS wave function

ΨBCS = A[φpairφpair...φpair] (10)

where φpair is the Cooper pair wave function depending on two spatial coordinates. The calculus

with the α condensate wave function is very much facilitated by a variational ansatz where Φα

is split into a product of a c.o.m. gaussian with a large width parameter B times another,
intrinsic, gaussian depending only on the relative coordinates of the α particle and having a
width parameter b which corresponds to the size of an isolated α particle. The first remark
to be made is that this THSR wave function contains two important limits: if B = b then it
corresponds to a pure harmonic oscillator Slater determinant. If B ≫ b, then the α’s are so
distant from one another that the Pauli principle among the different α’s can be neglected and,
thus, the antisymmetriser be dropped. The THSR wave function is then a pure product state
of α particles, i.e., a condensate state of ideal bosons. Reality is, of course, in between those
limits and one important task is to find out whether reality is closer to a Slater determinant or
to a Bose condensate. That this question must be carefully investigated, can also be deduced
from the fact that a number-projected BCS wave function always leads to a non-trivial pairing
solution. For example for 208Pb, one obtains a non-trivial BCS solution in spite of the fact
that 208Pb is certainly not superfluid. Only when the original particle-number-breaking BCS

theory with |BCS〉 = e
∑

z
kk′

c+
k
c+
−k |vac〉 has a non-trivial solution, can we speak of a superfluid

nucleus. For 208Pb there is no such solution. One way to analyse whether the THSR approach
leads primarily to an α condensate or to a Slater determinant, is to investigate the bosonic
occupation numbers. An ideal Fermi gas has occupation numbers which are either one or zero.
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In an ideal Bose condensate the bosons will occupy the lowest single-particle state with 100%.
Of course, in real nuclei, neither the fermionic nor the bosonic occupation numbers agree with
those of an ideal gas. For nucleons, we know that occupation numbers are around 70-80% down
from 100%. For the α occupations in the condensate, we also have found a number around 70%,
all the other occupancies being down by at least a factor of ten, whereas for the ground state the
occupation numbers are almost equally distributed according to the SU(3) shell model scheme
[8]. This is a typical condensate situation, though not totally the one of an ideal condensate.
Residual antisymmetry effects between the slightly overlapping α particles makes that, with a
certain probability, the α’s are scattered out of the condensate. In addition there are also other
correlations at work. One of the most important ones is certainly the formation of 8Be clusters
out of two α’s. The answer is unclear even to the question whether α gas does not in reality
consist of a gas of 8Be’s. The latter are, of course, also bosons and the old question arises
whether in an attractive Bose gas the bosons condensate as singles or as molecules [9]. This is
certainly a very interesting question which deserves further studies in the future.

Many other extensions of α condensation are presently discussed theoretically and
experimentally. An intersting aspect is whether on top of the α condensate states excited α
gas states exist. A long debate has recently been closed about the nature and existence of the
second 2+ state close to 10 MeV excitation energy in 12C. Very nice experimental results by
M. Freer, M. Itoh, and M. Gai have recently shown that this state is there and that it is a
member of a family of α gas states [10, 11, 12]. Many more results, for instance, in 16O are to
be expected. One of the most exciting aspects is that one may be able to dismantle nα nuclei,
with n a rather large number like n = 10 or more, into n α-particles. The first results in this
direction have been reported at this conference on 56Ni, a nucleus with 14 α-particles, by H.
Akimune. A dream would be that all α particles be just excited to the Ikeda threshold and
then they disintegrate in a very slow motion as a kind of coherent state driven by the Coulomb
force, i.e., it would be some kind of soft Coulomb explosion. This would then be rather close to
what happens with a trapped Bose condensate of cold atoms upon switching off the trapping
potential. Other exciting perspectives are that α particles could exist in a gaseous phase on top
of an inert core. For example four α’s on top of 16O in 32S, or other variants, even in quite
heavy nuclei. Because of space restrictions, we, unfortunately, cannot enlarge further upon these
exciting aspects of α-gas type of states in nuclei.

Before closing, we would like to discuss, however, the question of a possible preformation
of α particles in heavy nuclei. As is well known, this question is of great importance for the
description of α decay rates. Let us take the example already alluded to in the infinite matter
section, namely 212Po. Since the lead core is doubly magic, one can treat it in mean field, i.e. as
a Slater determinant with a suitable Skyrme- or Gogny-type force. That is we may view 212Po
as an α particle on top of a finite Fermi gas. If such a configuration exists, the α decay rate
of 212Po suggests, and it is clear from our experience with the Hoyle state as well, that such
a cluster state cannot be described within the shell model alone, see [13, 14]. In the infinite
matter section, we have already considered a situation where a single α particle is embedded
in an uncorrelated Fermi gas. This was the case with respect to the critical temperature. For
212Po we can consider our treatment of the single-α case even at zero temperature. Of course
we cannot use the ansatz (2) as it is, since it corresponds to a c.o.m. wave function which is
a plane wave eiKR. In position space (2) reads Ψ1234 ∝ eiKRψint.(|ri − rj |) where ψint. is the
intrinsic wave function depending only on the relative coordinates. In a finite nucleus, instead
of the plane wave, one would have to use a wave packet considering the following wave function

Ψ1234 ∝ Φ(R)ψint.(|ri − rj |) (11)

where ψint. and Φ are to be determined variationally upon inserting (11) into Eq. (1) where all
indices and ingredients correspond now to the mean field of 208Pb. For instance, εi correspond
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to the HF energies and the fi are to be replaced by the HF occupation numbers at T = 0. In ad-
dition, for ψint., one could use, as for the study of the Hoyle state, a gaussian wave function with
the width parameter b. Then the single unknown would be the spherical wave function Φ(R)
to be determined variationally where R is the c.o.m. coordinate of α with respect to the centre
of the Pb core. Our knowledge that α’s can only exist at very low density incites us to believe
that this Φ wave function should be peaked rather far out in the surface of the Pb nucleus. If
true, this would be a nice explanation of a preformed α particle in the nuclear surface. Adding
more than one α to the Pb core may suggest that there could exist some sort of α condensate in
the surface in a fluctuating state. However, as we know, adding more α’s to the Pb core leads
to deformed nuclei and the treatment of α’s in the surface becomes a much more delicate subject.

4. Conclusions

As we have seen, the existence of α gas and α condensate states in nuclear systems where the α’s
play practically the role of elementary bosons, is fascinating. Nuclear physics is at the forefront
of this kind of physics. In the future, experiments with cold atoms trapping four (or more)
different kinds of fermions may also open wide perspectives in the field of cluster physics. For
more reading on α cluster states, we invite the reader to consult our review article [8].
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