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Abstract. Assuming that the α particle is a structureless point particle with two protons
and two neutrons, we construct a mean-field-type cluster potential based on the Woods-Saxon
potential with a folding factor which is to satisfy the quantization condition of a quasibound
cluster state. The folded Woods-Saxon cluster potential has been successfully applied to the
calculations of α-particle decay in light and superheavy nuclei. The standard values of the
Woods-Saxon parameters were used without any adjustment. The calculated α-decay widths
or lifetimes agree generally with experiment. Such a cluster potential leads to a consistent
description of single-particle and cluster motions.

1. Introduction

Alpha-particle emission is the most important decay mode of nuclei heavier than Pb. Also, α
decay has been observed widely from the excited states of light nuclei. In light nuclei, α-cluster
structures are favoured when nuclei are excited to the vicinity of the α-decay threshold [1].
Molecular structures with two or more α particles and covalent neutrons in light nuclei have
become a hot topic currently in both experiment [2, 3] and theory [4, 5]. In heavy nuclei, α
decay can happen from the ground states as well. For superheavy nuclei, detecting α decay is a
unique method to identify new superheavy elements.

Theoretically, α-particle emission can be considered a process of quantum tunnelling of an α
particle through a potential barrier, which is called the Gamow decay model [6]. A reasonable
barrier is crucial for the calculation of decay width or lifetime. Several phenomenological α-
cluster potentials have been proposed for the calculations of α-decay half-lives and spectroscopic
properties [7, 8, 9]. Double-folding microscopic cluster potentials have also been successfully
applied to α-decay and α-scattering calculations [10, 11, 12, 13, 14].

2. The model

In our previous works [15, 16, 17, 18, 19, 20], we constructed folded mean-field-type cluster
potentials based on microscopic Skyrme-Hartree-Fock [15, 16, 17] or phenomenological Woods-
Saxon potentials [18, 19, 20]. These cluster potentials have been successfully applied to the
calculations of various cluster decays including α and heavier cluster decays [15, 16, 19, 20] and
molecular structures as well [16, 18]. In this paper, we review the Woods-Saxon-potential-based
calculations with focusing on α decay from excited states of the light nucleus 24Mg and from
the ground states of superheavy nuclei.
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In the spherical case, the cluster potential can be decomposed as (e.g., [8])

V (r) = VN (r) + VC(r) +
~
2

2µr2
l(l + 1), (1)

which contains the nuclear potential VN (r), the Coulomb potential VC(r) and the centrifugal
potential with l and µ for the angular momentum carried by the α particle and the reduced
mass of the α-core system, respectively [15]. The general folding procedure to derive a cluster
potential can be written as [10]

VN (r) = λ

∫ ∫

ρ1(r1)ρ2(r2)veff(|r+ r1 − r2|)dr1dr2, (2)

where λ is the folding factor, veff(|r + r1 − r2|) is an effective nucleon-nucleon interaction, and
ρ1(r1) and ρ2(r2) are the densities of the daughter and the cluster, respectively. To simplify the
equation above, we consider the cluster as a structureless point particle, then obtain

VN (r) = λ

∫

[Zcρ
p
1(r1)v

p
eff(|r+ r1|) +Ncρ

n
1 (r1)v

n
eff(|r+ r1|)]dr1, (3)

where the superscripts ‘p’ and ‘n’ indicate the proton and neutron, respectively, and Nc and
Zc are the neutron and proton numbers of the cluster, respectively. For the α particle, Nc = 2
and Zc = 2. In Eq. (3) the integral gives the mean-field single-particle potential. Therefore, the
nuclear potential between the cluster and the remaining core can be simplified further,

VN (r) = λ[Ncvn(r) + Zcvp(r)], (4)

where vn(r) and vp(r) are single-neutron and single-proton potentials (excluding the Coulomb
potential) respectively, generated by the core. Single-particle potentials can be obtained by
mean-field models, such as the Skyrme-Hartee-Fock (SHF) [15, 16, 17] or the simple Woods-
Saxon potential [18, 19, 20]. The Coulomb potential VC(r) need not be calculated by a folding
procedure; we take its usual form [21] with assuming a homogeneous charge distribution in the
daughter.

In this paper, we adopt the Woods-Saxon potential for the single-particle mean-field, that is

v(r) =
V0

1 + e
r−R
a

, (5)

with

V0(r) = −V00

(

1± κ
Nd − Zd

Nd + Zd

)

, (6)

where the sign is + (−) for the proton (neutron). The index ‘d’ indicates the daughter.
The folding factor λ is determined by the Bohr-Sommerfeld quantization condition, which,

for the ground state, looks like

∫ r2

r1=0

√

2µ

~2
|Q0 − V (r)|dr = (2n+ 1)

π

2
= (G+ 1)

π

2
, (7)

where r1, r2 (and r3 later) are classical turning points obtained from V (ri) = Q∗

l (the decay
energy). The global quantum number G = 2n (n is the node number in the radial wave function

of the cluster tunnelling motion) is determined by the Wildermuth rule [22], giving G =
∑Ac

i=1 gi
where Ac is the nucleon number of the cluster and gi is the oscillator quantum number of a
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cluster nucleon orbiting the core. The gi numbers are those of the single-particle states occupied
in the parent nucleus by the nucleons constituting the α particle to be emitted.

The partial α-decay width is calculated by [8, 16, 19]

Γ = P
~
2

4µ

exp
[

−2
∫ r3
r2

k(r)dr
]

∫ r2
r1

dr/2k(r)
, (8)

where k(r) =
√

(2µ/~2)|Q∗

l − V (r)| is the wave number, and P is the preformation factor of
the α-particle being formed in the mother. For even-even nuclei, it has been well established
that the P = 1 assumption under the use of the Bohr-Sommerfeld condition can well reproduce
the experimental half-lives of various cluster decays [8, 15]. The decay half-life is calculated by
T1/2 = ~ln 2/Γ. In the equations above, Q∗

l is the α-decay energy from an excited state,

Q∗

l = Q0 + E∗

Ji − E∗

Jf
, (9)

where Q0 is the α-decay energy of the ground state, and E∗

Ji
and E∗

Jf
are the excitation energies

of the mother with spin Ji and the daughter with spin Jf . The orbital angular momentum l
carried by the α particle can be determined from the vector coupling of l and Jf to Ji and from
parity conservation. Since the decay calculation is very sensitive to the Q∗

l value, experimental
values have been used for Q0 and the excitation energies.

3. Alpha-decay calculations for the excited states of 24Mg and the ground states of

superheavy nuclei

In α-decay calculations for 24Mg, we take the Chepurnov parameters [23] of the Woods-Saxon
potential, which work well for light nuclei. For the 24Mg ground state, nucleons belonging to
the α particle should occupy orbits immediately above the Fermi surface of the daughter 20Ne,
i.e., the d5/2 shell, which gives a value of G = 8 [19]. Using the Bohr-Sommerfeld condition

with taking the experimental Q0 = −9.316 MeV for the α+20Ne channel, we obtain a folding
factor of λ = 0.608 for the α-cluster potential in 24Mg. It has been known experimentally that
the 24Mg excited states in the energy range of ≈ 10− 15 MeV decay dominantly by α emission
[24]. The occurrence of α decay requires decay energies satisfying Q∗

l = Q0 + E∗

Ji
− E∗

Jf
> 0.

Therefore, the excited states in this energy range decay mainly into the 0+1 (g.s.) and 2+1 (1.63
MeV) states of 20Ne. Assuming a preformation factor of P ≈ 1 for every α-decay transition,
we calculated the α-decay widths of some excited states of 24Mg. The widths obtained agree,
in most cases, with the experimental data within two orders of magnitude, see [19] for detailed
results. The preformation probabilities of an α particle in the excited states of 24Mg range from
10−2 to 1 [25], which might explain the discrepancies between the calculated and experimental
widths.

The folded Woods-Saxon cluster potential has also been applied in the α-decay calculations of
the ground states of superheavy nuclei [20]. For superheavy nuclei, however, we took another set
of the Woods-Saxon parameters, which has been widely used in cranking shell-model calculations
of high-spin states in heavy and superheavy nuclei (see, e.g., [26] and references therein). They
are

V00 = 53.754 MeV,

κ = 0.791,

a = 0.637 fm,

r0 = 1.19 fm.

(10)

The main difference between this set of parameters and the Chepurnov parameters for light
nuclei is in the radius parameter r0. The Chepurnov parameterization takes r0 = 1.24 fm [23].
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Table 1 lists the calculated half-lives of α decays for even-even superheavy nuclei. They agree
with the experimental values within one order of magnitude. For superheavy nuclei, we took
the global quantum number G = 22 [17], which is consistent with the Wildermuth rule. The
discrepancies between calculations and data might come from two main factors: 1) deformation
effects (most superheavy nuclei are deformed, while our calculations were limited to spherical
shapes); 2) possible large uncertainties in experimental half-lives due to poor statistics of decay
events.

Table 1. Calculated half-lives of observed α decays for even-even superheavy nuclei. Data are
from [27, 28, 29].

Nuclei λ T calc
1/2,α T expt

1/2,α

(second) (second)

246Fm 0.764 7.33×10−1 1.1×10+0

248Fm 0.763 1.28×10+1 3.6×10+1

250Fm 0.762 5.16×10+2 1.8×10+3

252Fm 0.761 2.02×10+4 9.1×10+4

254Fm 0.757 4.32×10+3 1.2×10+4

256Fm 0.755 5.99×10+4 9.5×10+3

252No 0.758 1.01×10+0 2.4×10+0

254No 0.757 1.13×10+1 5.1×10+1

256No 0.751 6.95×10−1 2.9×10+0

256Rf 0.755 3.30×10−1 3.6×10−1

260Sg 0.747 2.27×10−3 3.6×10−3

266Sg 0.744 1.94×10+0 2.6×10+1

264Hs 0.742 1.88×10−4 1.0×10−4

266Hs 0.740 7.59×10−4 2.3×10−3

270Hs 0.747 5.60×10−1

270Ds 0.734 2.55×10−5 1.0×10−5

284Cn 0.730 9.39×10+0 9.8×10+0

288114 0.725 4.37×10−1 1.9×10+0

292116 0.720 1.82×10−2 3.3×10−2

In summary, we have proposed a folded Woods-Saxon α-cluster potential. The advantage
of this cluster potential is that no new free parameter is to be introduced, which makes the
predictions reliable. Moreover, it leads to a consistent description of single-particle and cluster
motions. Within the framework of the quantum-tunnelling picture, the potential has been
successfully applied to the α-decay of some excited states of 24Mg with excitation energies of
Ex ≈ 10–15 MeV and to the ground states of superheavy nuclei. The calculated decay widths
or half-lives agree reasonably with experimental values.
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