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D.F., Mexico
3 Frankfurt Institute for Advanced Studies (FIAS), J.W. von Goethe Universität,
Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
4 GSI für Schwerionenforschung Helmholzzentrum GmbH,Max-Planck-Str. 1
64291 Darmstadt, Germany
5Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Pf. 51,
Hungary-4001

E-mail: hess@nucleares.unam.mx

Abstract. We study the properties of the Semimicroscopic Algebraic Cluster Model (SACM)
under phase transitions. We show that the SACM can undergo first and second order phase
transitions and a critical line appears. When the Pauli principle is not observed, the critical
line appears, but other non-physical properties arise. At the end the meaning of the SO(4)
dynamical limit is discussed.

1. Introduction

In this contribution the structure of phase transition within the SACM is discussed. The same
will be done when the Pauli exclusion principle is not taken into account. Some physical
interpretation of the SO(4) limit is also given. The discussion of phase transitions is enormously
simplified when a geometrical mapping is applied. A semi-classical potential is obtained which
depends on variables related to physical observables as the distance between two clusters. Phase
transitions then manifest themselves by certain structural changes in the potential.

In section 2 the SACM is shortly reviewed, the Hamiltonian is defined and the method of
geometrical mapping is explained. The semi-classical potential is obtained, which is used to
investigate the phase transitions of the model. Changes are discussed when the Pauli exclusion
principle is not observed. At the end some remarks are made concerning the physical meaning
of the SO(4) dynamical limit. In section 3 conclusions are drawn.

2. The SACM and the geometrical mapping

We shall shortly resume the main features of the SACM [1, 2]. The relative degrees of freedom
are described by the oscillator boson operators π†

m and πm, with m = 0,±1. To that the scalar
boson operators σ† and σ are also added: these have no physical meaning but are needed in
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order to introduce a cutoff in the theory. All combinations of any creation with any annihilation
operator form the UR(4) group, where the R refers to the relative motion. The total number
of bosons N = nπ + nσ is kept constant, i.e., the number of π-bosons ranges from 0 to N .
The individual clusters are described via the SU(3)-model of Elliott [3]. In this way both the
relative motion and the orbital structure of the clusters is characterized by an SU(3) irreducible
representation (irrep) (λ, µ).

The model space is constructed as follows. First, one determines the result of the product
(λ1, µ1) ⊗ (λ2, µ2) ⊗ (nπ, 0), which gives a sum of total SU(3) irreps with a certain multiplicity.
Second, all possible excitations of the nucleons within the shell model are constructed, for
nh̄ω excitation, with the center of mass removed. This list of shell model irreps, which by
construction observe the Pauli exclusion principle is compared to the former list. Only those
irreps are included in the SACM model space, which appear also in the shell model space. This
method automatically reproduces the Wildermuth condition, which states that there is a minimal
number of π-bosons (n0) needed as a necessary condition to satisfy the Pauli exclusion principle.
In this manner, the Pauli exclusion principle is observed. Since the model space is constructed
microscopically, one can study in this framework the overlap of the cluster configurations with
the states of the shell and collective models, e.g. the clusterization of the superdeformed (SD)
and hyperdeformed (HD) states. It is remarkable that the predictions of the model seem to be
justified by the experimental observation in some cases, like for the SD state of 28Si [4] and for
the HD state of the 36Ar [5].

The Hamiltonian is phenomenological, indicated by ”semi” in the acronym SACM. We
consider the sum of Hamiltonians, each describing a particular dynamical symmetry limit. Due
to lack of space we shall present here the Hamiltonian taking into account only the SU(3) and
SO(4) dynamical symmetries. The first one is known as the vibrational limit, while the second
one as the deformed limit, though, as will be shown below, within the SACM the potential is
already deformed by construction.

The Hamiltonian has the form

H = xHSU(3) + (1− x)HSO(4) , (1)

where x is the parameter ranging from 0 to 1, determining the relative weight of each symmetry.
In their most general form, the individual components are

HSU(3) = h̄ωnπ + aCC2(λC , µC) + (ā− b̄△nπ)C2 (nπ, 0) + (a− b△nπ)C2(λ, µ) + γL2 + tK2

HSO(4) = aCC2(λC , µC) + aCLC
2 + a

(1)
R LR

2 + γL2 +
c

4

[

(

π
† · π†

)

−
(

σ
†
)2
]

[

(π · π)− (σ)2
]

.

(2)
The SU(3) Hamiltonian contains a third-order interaction. Because the interaction

proportional, for example, to the C2(nπ, 0) interaction is given by nπ(nπ + 3), this term
dominates for large nπ and destroys the mean field part h̄ωnπ. In models with a fixed number
of nπ this is avoided by limiting the model space to few h̄ω excitations. However, we include
mixing of nπ and this requires to test convergence for increasing N . This type of Hamiltonian
was applied successfully in several studies, of which we cite here only a few [6, 7].

The semi-classical potential is obtained by choosing first a trial state | α〉 and then calculating
the expectation value of the Hamiltonian with respect to this normalized trial state, i.e., V (α)
= 〈α | H | α〉. Here α is a short hand notation for the variables of the state.

As a trial state we use

|α〉 = NN,n0
(α · π†)n0

[

σ† +
(

α · π†
)]N

|0〉

= NN,n0

N !

(N + n0)!

dn0

dγn0

1

[

σ† + γ1

(

α · π†
)]N+n0 |0〉 , (3)
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where, for convenience, we redefined the total number of relative oscillator quanta as (N + n0),
while the γ1 parameter has to be set equal to 1 after the differentiation, and the normalization
factor NN,n0

is given in [8]. Already here we obtain an essential difference with respect to the
case when the Pauli principle is not observed. As shown in [8], the α variable is proportional
to

√
n0 and also proportional to the separation of the clusters. Thus the so-called vibrational

limit (α = 0) describes already a deformed system. Nevertheless, we shall keep the notation as
it is. A special limit arises when n0 is set to zero, i.e. no Pauli exclusion principle is observed.
Models with this property we call PACM (Phenomenologic Algebraic Cluster Model).

The resulting potential has a surprisingly simple structure. The main part depends on only
three parameters and is given by

Ṽ (α) =

(

A(x, y)α2F11
(

α2
)

F00 (α2)
−B(x, y)α4F22

(

α2
)

F00 (α2)
+ α6F33

(

α2
)

F00 (α2)
− C(x, y)α2F20

(

α2
)

F00 (α2)

)

. (4)

The expressions for Fpq

(

α2
)

as well as for the coefficients A (x, y), B (x, y) and C (x, y) can be
found in Ref. [9]. They are functions of all parameters of the model. It is important to note that

although the Hamiltonians depends on many parameters, the semi-classical potential depends

effectively only on three of them. Thus the discussion of phase transition properties is reduced

to the variation of three parameters only! The same potential could, in principle, be obtained
in the PACM too, by paying the price of the introduction of non-polynomial interactions. This
is similar to simulating Fermi repulsion in nucleus-nucleus collisions with a potential that is
repulsive for small distances.

Phase transition is investigated, following the steps: i) The minima of the potential are
determined numerically. There will appear only two possible minima, a deformed (α2 > 0) and
a spherical one, the latter corresponding to α1 = 0. The point α1 = 0 is always an extremum.
ii) The three parameters are varied and those points are determined, where the two minima
coincide. These points, which form a surface in the space of the parameters, are at the phase
transition boundary. iii) The corresponding α variables are substituted into the potential. For
the spherical minimum α1 = 0 is always zero, which results in an expression for the potential
which is identical zero, and therefore the derivatives of it with respect to the parameters is always
zero. iv) The derivatives with respect to the parameters are determined and compared at the
point of phase transition. Due to the structure of the potential a simple rule could be derived
[9, 10]: If α2 at the point of phase transition is greater than zero, then the first derivatives in
the two potential minima are different and the transition is, therefore, of first-order. However,
when α2 tends to zero approaching the point of phase transition, then the phase transition is of
second order. The new feature is that from a given point on, no phase transition appears and
a critical line is obtained. As a conclusion, the SACM permits first- and second-order phase
transitions. The situation is illustrated in fig. 1. In the right panel α2 is plotted versus A and
C (B is determined via the condition that only points at the surface of phase transition are
considered). The area where α2 is zero represents the surface of second-order phase transition,
while the other area corresponds to the surface of a first-order phase transition. In the left panel
this surface is plotted in the space of the parameters. Note the appearance of a dashed line
(the solid line separates the first- from the second-order phase transitions). Beyond this line no
phase transition appears and this represents a critical line.

The same considerations were applied, i.e. in the PACM, where the minimal number of
π-oscillation quanta is zero. Though the Hamiltonian is the same, the semi-classical potential
changes significantly. The important part has the form

Ṽ (β) =
{

Aβ2 −Bβ4 + β6
}

, (5)
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Figure 1. The phase space diagram of the SACM as a function of the independent parameters
A, B and C (left panel) . The solid line marks the change from a second- to a first-order phase
transition, the dashed line indicates a critical line. The variable ᾱ2 of the deformed solution, as
a function in A and C. B is fixed by the requirement that one is at a point of a phase transition
(right panel).

with β2 = α2

1+α2 . The expression for the coefficients A (x, y) and B (x, y), can be found in Ref.

[9]. The points of phase transitions now form a line. First- and second-order phase transition
appear but not a critical point. The first-order phase transition appears due to the inclusion of a
third-order interaction in the SU(3) Hamiltonian, otherwise only second-order phase transitions
are permitted.

In fig. 2 the space of phase transitions is plotted. There are only two relevant parameters A
and B. The explanation is given in the figure caption.
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Figure 2. The parameter
phase diagram for the PACM.
The horizontal axis is B, while
the vertical axis corresponds
to A. In Region I and Re-
gion II two minima exist, one
spherical and one deformed.
In Region I the global min-
imum is the deformed one,
while in Region II it is the
spherical minimum. In Region
III only a spherical minimum
exists and in Region IV the
only minimum is a deformed
one.

Finally, we would like to point out severe problems for states at low energy, when the Pauli
exclusion principle is not observed. As an example we consider the 16O+α → 20Ne system. In

10th International Conference on Clustering Aspects of Nuclear Structure and Dynamics IOP Publishing
Journal of Physics: Conference Series 436 (2013) 012033 doi:10.1088/1742-6596/436/1/012033

4



the SU(3) limit the ground state would be formed by a 0+ state in the (0,0) SU(3)-irrep, a
2+ state in (2,0), a 4+ state in (4,0), etc. Even when one adds the interaction term L

2, which
gives a rotational L(L + 1) structure, simulating a rotational band, this band is not rotational
because each state has a different intrinsic structure. Using the SO(4) dynamical symmetry limit
gives a quite good agreement to experiment (!), however, the resulting states jump between low
nπ and hight nπ, near the cut-off N , making the result dubious. Another problem appears in

the geometrical limit: the interaction

[

(

π̂† · π̂†
)

−
(

σ†
)2
]

[

(π̂ · π̂)− (σ̂)2
]

tends to a potential

of the type
[

af(α)α2 − bN
]

, where f(α) is a simple expression of the order of one and a, b
depend on N and n0 (which is 0 for the PACM and > 0 for the SACM). Removing the cut-off
(N → ∞) the minimum of the deformed potential tends to infinity too, being more equivalent
to a dissociation limit. This problem arises in both the SACM and PACM, shedding doubt on
the physical meaning of the SO(4) dynamical symmetry as a deformed limit.

3. Conclusions

In this contribution we showed that the SACM permits a very rich structure of phase transitions,
including first and second order. A critical line also appears. When the Pauli exclusion principle
is not observed, and a Hamiltonian of up to third order interactions is applied, then first- and
second-order phase transitions still appear, but not a critical line. The results of the SACM
could, in principle, be also reproduced within the PACM, but only paying the price of using a
very complicated non-polynomial interaction that simulates the Pauli-exclusion principle. We
also showed that neglecting the Pauli exclusion principle leads to dubious behavior for the
states at low energy, even though the experimental spectrum is well reproduced. This puts some
doubt on the argument that when the experiment is reproduced the model is fine. More has
to be included, such as the structure of the states and the fulfillment of basic principles, as the
Pauli exclusion principle is. These deficiencies may, of course, manifest themselves in failing to
reproduce further experimental observables not discussed in the model.

Finally, we discussed the physical interpretation of the SO(4) dynamical symmetry limit,
which rather describes a dissociation of the cluster system than a deformed limit.
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Cseh J, Darai J, Sciani W, Otani Y, Lépine-Szily A, Benjamim E A, Chamon L C and Lichtenthäler Filho
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[9] Yépez-Mart́ınez H, Fraser P R, Hess P O and Lévai G 2012 Phys. Rev. C 85 014316
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