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Abstract. This paper describes a method to rank potential infill well locations using Artificial 

Neural Networks (ANN) from existing well data. Sensitivity test was conducted for training 

and testing data used with comparison 2:8, 4:6, 5:5, 6:4 and 8:2 for each data. Root Mean 

Square Error difference between training and test data show that the best results obtained from 

the ratio of training data and testing data 8: 2. Two ANN models were built.  The first model 

predicted top sand depth, resistivity, gamma-ray and density-neutron from infill well location 

(chosen from structural position and good oil rates from offset wells).  The second model 

predicted initial oil rate from outputs from the first model. Predicted initial oil rates from the 

ANN model were compared with those from the 3D reservoir simulation model.  They shows 

similar prediction of oil rates which gave high confidence in the predicted oil rate.  Very 

different oil rate prediction between the two models can be used as consideration to improve 

the simulation model. 

Keywords: Mature Oil Field, Artificial Neural Network, Infill Well, Prediction 

1. Introduction 

Mature fields make a significant contribution to global oil production. A 2011 report from IHS 

Cambridge Energy Research Associates stated that approximately two-thirds of global oil production 

comes from mature fields and this percentage is increasing over time [1]. High contribution from 

mature field was followed by high challenge from its field such as high water cut produced and limited 

drilling-site availability due to population encroachment. Facing this problem we have limited 

alternatives to increase the oil production through secondary recovery or tertiary recovery technology 

but unfortunately this technology will spend high expenditure and longer time caused by detail study 

that needed to have a good reservoir characterization. Therefore one of the best solutions to keep 

production decline in a mature field is by drill new infill well. In this study we will share a method to 

predict infill well location optimally with limited time. 

Predicting the well performance need a sufficient data in terms of number and quality of data. For 

example, when an engineer wants to predict the wells performance by using decline curve analysis, 

they need to have flow rate of oil production data for a minimum 6 months period since the well has 

produced. This data will be used to produce the trend line before it forecasted. The quality of the data 

is very critical to the cumulative oil recovery because if the flow rate measured is smaller than the 
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actual, the result will become pessimistic. On the other hand, when you want to use other methods 

such as material balanced, it would require additional data beside the production data such asfluid 

properties consist of gas, oil and water. The most advanced method that is currently widely used to 

predict the performance of a well is by using 3D reservoir simulation model. To build a 3D reservoir 

simulation models require large number of data, such as geophysical data, geological data, and 

production data. Also when building this model,it will take a long time, so hopefully by using 

Artificial Neural Network (ANN) method for predicting a well, it can be an alternative since the ANN 

models do not require as much data as the used to construct the 3D reservoir simulation model. 

The neural network model was introduced by McCulloch and Pitts [2]. The model is an information 

processing model that is inspired by the way biological nervous systems. The key element of this 

paradigm is the novel structure of the information processing system. It is composed of a large number 

of highly interconnected processing elements (neurons) working in unison to solve specific problems. 

The neural network model has been successfully applied to several fields of petroleum engineering 

such as reservoir engineering such as permeability estimation [3], reservoir heterogeneity 

characterization [4] and designing improved oil recovery methods [5]; production engineering such as 

multiphase flow measurements in pipes [6,7], pump identification [8], and production prediction [9]; 

and drilling engineeringsuch as drill bit diagnostics [10], rate of penetration [11], and bit selection [12-

14]. 

The purpose and objectives of this research are: to identify potential infill well location in a mature 

oil field, to know the sensitivity of the amount of data between the training data and testing, to reduce 

uncertainty level in initial oil rate for the upcoming infill well, to increase the level of confidence 

inpredicting the performance of infill wells and to obtain potential infill welllocations with short time 

period. 

2. Field Background 

Melibur Field is located in Malacca Strait Block, east coast of Riau Province, Sumatra, Indonesia, as 

illustrated in Figure 1. Reservoir structure of the Melibur Field is anticline structure that is broken on a 

layer of sand rock formations Sihapas. This field was discovered in 1984 and still as an undersaturated 

reservoir. Following the appraisal and development drilling, this field finally started production in late 

1986. Over time, the production of the reservoir Sihapas can no longer rely on the natural driving force 

due to the pressure reservoir has been declining from a reduced ability of the aquifer to maintain 

reservoir pressure. So at the beginning of 1988, the reservoir pressure has been reduced to below 

saturated pressure, which resulted dissolved gas has produced to the surface. Of course this causes 

problems for the production of oil in the well because of the tendency of gas that more easily to 

produce than oil. 

In mid-1988, the reservoir simulation study has conducted in Melibur Field to optimize the oil 

recovery from this field. Recorded from the mid 1990s until now infill well drilling program inMelibur 

Field still continues to maximize oil recovery. 

Since the reservoir is controlled by some faults, the reservoir is then divided into four areas/regions 

based on oil compartment analysis. The oil compartment system has been determined based on some 

considerations: oil properties, production performance and fluid contacts. The areas and the existing 

wells of Melibur Field are shown in Figure 2. Hydrocarbon in the Melibur Field trap on four separate 

areas, namely North West, Main, South and South East. Each area is characterized to have different 

contacts which are defined by geology as well as the facts and analysis of the technical side. 

Until 2009, there are 74 wells in Melibur field, 55 of them still producing. Melibur Field producing oil 

about 2600 BOPD from Lower Sihapas formation and current cumulative oil production about 40.6 

MMSTB based on production data in 2009. Main compartment is the biggest contributor; it is almost 

90% of total cumulative production of Melibur field. 

Melibur Field consists of four areas: Northwest, Main, South and Southeast. The main priority 

areas is called Main area that has produced a total oil cumulative per September 2008 is 35 MMSTB 
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or equal to 90% of the total cumulative production in Melibur Field. The peak oil production was 

14,700 BOPD and the decline rate in reservoir Sihapas is equal to 7 x 10-4 / day as shown in Figure 3. 

 

 

 

 

 

 

 

 

Figure 1. Malacca Strait Block [15]. 

 

 

Figure 2. Melibur Field [15]. 

 

3. Artificial Neural Network Model 

Figure 4 depicts a flow chart used to build the model Artificial Neural Network (ANN) so that the log 

parameters and initial oil flow rate from certain coordinate can be predicted. Artificial neural network 

is a computation model that uses analogy from the brain properties. This network consists of a few 

simple parameters that work in parallel without any major control. The learning process becomes the 

main processes that occur to minimize the differences in outcomes between the training data and 

testing. Developed a neural network is a relationship between a set of input data and output data. The 

general configuration of the neural network with one layer feedforward method consists of two 

parameters: input neurons and output neurons. 

Activation function used during this training is sigmoid function. At the initial condition that the 

connection weight value entered is the default value. When the network is considered good enough by 

the parameters entered, then the next general model is made to determine the relationship between 

input and output. One can determine the effect of a series of parameters in the input to the output by 



ICEMINE

IOP Conf. Series: Earth and Environmental Science 212 (2018) 012070

IOP Publishing

doi:10.1088/1755-1315/212/1/012070

4

 
 
 
 
 
 

performing sensitivity. In this case the default parameters used due to the sensitivity of the tests are 

those that can deliver the highest matched value. The default parameters used are as follows: 

 Initial Weight: 0.3 

 Learning Rate: 0.3 

 Momentum: 0.6 

 Epochs: 50000 

By using the default parameters in the above test, the sensitivity of the amount of training data and 

testing were examined. Two neural network models were built. The first model was used to predict the 

log parameters and the second model was used to predict the initial oil flow rate obtained from the 

output of the first model. In building this neural network model of the comparison between the training 

data were as follows 2: 8, 4: 6, 5: 5, 6: 4 and 8: 2. 

To determine the quality of a model built is good or not, we determined by calculate Root Mean 

Square Error (RMSE) between the estimated output of neural network models and measured output of 

the test data-sets. The maximum limit that can be tolerated RMSE authors determined from the 

difference in the range of data that is multiplied by 30%. Table 1 shows the maximum RMSE values 

for each parameter. 

   

 

 

 

Figure 3. Production History in Melibur Field [15].  Figure 4. Workflow. 

 

3.1. Training and Testing Data – Log Parameter 

The first model has two inputs in form of well coordinates, X coordinates and Y coordinates with 5 

output parameters, Top Sand Depth, Gamma Ray Log, Resistivity Log, Neutron Log and Density 

Logs. Training and testing output data obtained from wirelline logging measurement and average 

value of gross sand was used to input to the model. Detail input and output data can be seen in 

Appendix Table A.8. 

Result of the sensitivity test for ratio data can be seen in Appendix Tables A.1 to A.6. The Table 2 

shows the best results of the sensitivity test with a ratio of training data and testing data 8: 2. The 

sensitivity of the test RMSE values obtained as follows 
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Table 1. RMSE Max Value. Table 2. RMS Error for Model 1. 

No 
Log 

Parameter  
Min Max RMSE Max 

1 
Top Sand 

Depth 
885 1010 38 

2 
Gamma 

RayLog 
71 127 17 

3 
Resistivity 

Log 
6 58 16 

4 Neutron Log 33 45 4 

5 Density Log 1.96 2.17 0.06 

6 Initial Oil Rate 22 534 154 
 

No 
Log 

Parameter 

RMS Error 

Training 

Data 

Testing 

Data 

1 
Top Sand 

Depth 
15 11 

2 
Gamma 

RayLog 
11 18 

3 
Resistivity 

Log 
8 7 

4 Neutron Log 2 2 

5 Density Log 0.04 0.06 
 

 

 

Figures 5 to 9 show the suitability of the results between prediction training data and actual training 

data for each parameter. 

 

 

   

Figure 5. Top Sand Depth Training Data.  Figure 6. Gamma Ray Log Training Data. 

 

 

   

Figure 7. Resistivity Log Training Data.  Figure 8. Neutron Log Training Data. 
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Figure 9. Density Log Training Data. 

 

In addition, Figures10 to 14 below show the suitability of the results between prediction testing data 

and actual testing data for each parameter. 

 

   

Figure 10. Top Sand Depth Testing Data.  Figure 11. Gamma Ray Log Testing Data. 

   

Figure 12. Resistivity Log Testing Data.  Figure 13. Neutron Log Training Data. 

3.2. Training and Testing Data – Initial Oil Rate 

The second model is built by using 6 input data which is 5 input was obtained from the first model, top 

sand depth, gamma ray log, resistivity logs, neutron and density logs while an additional input is 

production months. Production months is the months that the well start producing. It determined from 

production months for the first wells in January 1987. These input data will be used to generate an 

output parameter initial oil rate. There are a total of 35 parameters of logs data and 35 initial oil rate 

data as output to be used as a training and testing the model. 
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Based on the sensitivity test conducted for the second model, the best results are obtained by 

comparison of the training and testing data 8: 2. The RMSE values obtained for the training data  is 1, 

this shows an almost perfect matchedwhile the RMSE values for the test results is 79, which is this 

value still below the maximum limit of RMSE. Figure 15 shows the suitability of the results between 

prediction training data and actual training data for initial oil rate. Figure 16 shows the suitability of 

the results between prediction testing data and actual testing data for initial oil rate. 

 

 

Figure 14. Density Log Testing Data. 

 

   

Figure 15. Initial Oil Rate Training Data.  Figure 16. Initial Oil Rate Testing Data. 

 

4. Prediction Result 

In order to validate the Artificial Neural Network model, the prediction results from the model are 

compared with those from reservoir simulation as follows: 

4.1. Prediction Result from Artificial Neural Network (ANN) 

Based on sensitivity tests performed between the amount of training data and testing of the previous, 

we conclude that for test results that produce the smallest RMSE value is a model that uses 

comparison between training data and testing data 8: 2. Therefore the prediction only performed by 

using the best models 8: 2 that has been saved. Prediction will be conducted to the well locations that 

will be drilled in the near future. There are 5 wells coordinates which would be predicted .The wells 

location can be seen in Figure 17. 

The selection of these wells coordinates are based on the depth structure (updip structure) and good 

production profile from the surrounding wells. Thesewells are assumed to be drilled in January 2014. 

Table 3 indicates the coordinates for each wells that are used as input for the first model to predict the 

top sand depth, gamma ray log, resistivity logs, neutron log and density logs. 
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Table A.7. in the appendix is the output obtained from the first models of Artificial Neural Network 

(ANN). From the outputs obtained from the first model, then the outputs are used as input for the 

second model which added one more input parameters such as production month for 307 months 

assuming these wells drilled in January 2014. Table 4 shows the results of the prediction rate Initial oil 

flow using Artificial Neural network model (ANN). 

 

 
 

Figure 17. Coordinate location of predicted wells. 

 

 

Table 3. Well Coordinates for Prediction. Table 4. Prediction Result from Artificial Neural 

Network (ANN). 

No Well 
X Coordinate 

(mE) 

Y Coordinate 

(mN) 

1 P-01 212653 116936 

2 P-02 213839 116240 

3 P-03 213534 116818 

4 P-04 213278 117214 

5 P-05 213896 117025 
 

No Well 
Production 

Months 
Initial Oil 

Rate (bbl/day) 

1 P-01 

307 

150 

2 P-02 67 

3 P-03 62 

4 P-04 99 

5 P-05 105 
 

4.2. Prediction Result from 3D Reservoir Simulation 

For convincing the prediction result obtained from the Artificial Neural Network (ANN) model, the 

initial oil flow rate also determined by using another method which is 3D reservoir simulation. 

Melibur Field simulation model has high degree of accuracy. It can be seen from the production 

comparison between reservoir model and actual are identical from the latest infill wells. 

Table 5 shows the results of the initial oil flow rate prediction using the 3D reservoir simulation 

which is the prediction was used liquid constraint 150 BFPD then obtained the following results. 

4.3. Prediction Result Comparison 

Prediction results from the reservoir simulation results above then compared with the results of the 

model Artificial Neural Network (ANN), which has been determined previously. Table 6 and Figure 

18 present the results of a comparison between the initial oil rate predictions of the Artificial Neural 

Network (ANN) models and 3D reservoir simulation model. 

The calculation result of the RMS error between these two values is 27 BOPD. There is a well P-03 

that has a very similar predictive value was within 1 BOPD. Then three wells obtained initial oil rate 

higher than models of Artificial Neural Network (ANN) and the rest of the wells, P-02 well obtain 
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lower value than reservoir simulation. Overall, predicted initial oil rate from the ANN model were in 

the same ball park as the 3D reservoir simulation model. 

 

Table 5. Prediction Result from 3D Reservoir 

Simulation. 

Table 6. Oil rate prediction comparison between 

ANN model and 3D reservoir simulation. 

No Well Initial Oil Rate (bbl/day) 

1 P-01 111 

2 P-02 85 

3 P-03 63 

4 P-04 66 

5 P-05 84 
 

No Well 

Initial Oil Rate (bbl/day) 

Artificial Neural 

Network (ANN) 

3D Reservoir 

Simulation 

1 P-01 150 111 

2 P-02 67 85 

3 P-03 62 63 

4 P-04 99 66 

5 P-05 105 84 
 

 

 
 

Figure 18. Initial Oil Rate Histogram of Artificial Neural Network 

(ANN) and 3D Reservoir Simulation. 

5. Conclusions 

1. Sensitivity analysis for the comparison between training and testing data has been successfully 

carried out which resulting 8 : 2 comparison give the lowest RMSE value for all parameters and 

it enter into the matched criteria with maximum RMSE value 30 percent of the difference from 

the range. 

2. The sensitivity tests conducted on the comparison between training and testing datashows that 

the more training data used, the smaller RMSE values obtained. Otherwise, if the training data 

usedjust a few data this will lead to higher RMSE values obtained indicate that the model is not 

accurate enough. 

3. Artificial Neural Network (ANN) can be used to estimate initial oil rate (and other economic 

inputs such as oil decline rate) for reservoirs where we do not have a reservoir simulation model.   

4. The calculation result of the RMSE for predicted initial oil ratebetween ANN and 3D reservoir 

simulation obtain good RMSE value 27 BOPD and overall it were in the same ball park. 

5. The process of training and testing data during building Artificial Neural Network (ANN) model 

is an ongoing and continuous-improvement process to further reduce RMS error which is nearly 

zero. 
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Appendices 

 

Table A1. RMSE for Top Sand Depth. Table A2. RMSE for Gamma Ray Log. 

Comparison 

Training Data 

: Testing Data 

RMSE 

Training  

Data 

Testing  

Data 

2 : 8 0 34 

4 : 6 13 26 

5 : 5 16 25 

6 : 4 15 25 

8 : 2 15 11 
 

Comparison 

Training Data : 

Testing Data 

RMSE 

Training  

Data 

Training  

Data 

2 : 8 0 26 

4 : 6 8 23 

5 : 5 10 20 

6 : 4 10 19 

8 : 2 11 17 
 

 

Table A3. RMSE for Resistivity Log. Table A4. RMSE for Neutron Log. 

Comparison 

Training Data 

: Testing Data 

RMSE 

Training  

Data 

Testing  

Data 

2 : 8 0 24 

4 : 6 4 24 

5 : 5 5 24 

6 : 4 5 19 

8 : 2 8 7 
 

Comparison 

Training Data : 

Testing Data 

RMSE 

Training  

Data 

Training  

Data 

2 : 8 0 5 

4 : 6 3 5 

5 : 5 3 3 

6 : 4 2 3 

8 : 2 2 2 
 

 

Table A5. RMSE for Density Log. Table A6. RMSE for Initial Oil Rate. 

Comparison 

Training Data 

: Testing Data 

RMSE 

Training  

Data 

Testing  

Data 

2 : 8 0 0.07 

4 : 6 0.03 0.07 

5 : 5 0.02 0.07 

6 : 4 0.03 0.06 

8 : 2 0.04 0.06 
 

Comparison 

Training Data : 

Testing Data 

RMSE 

Training  

Data 

Training  

Data 

2 : 8 0 161 

4 : 6 3 213 

5 : 5 0 143 

6 : 4 3 113 

8 : 2 1 79 
 

 

 

Table A7. Artificial Neural Network (ANN) Prediction Result for the First Model. 

 

No Well 

Top Sand 

Depth 

(ft TVDSS) 

Gamma 

Ray Log 

(GAPI) 

Resistivity 

Log 

(Ω-m) 

Neutron 

Log 

(%) 

Density 

Log 

(gr/cc) 

1 P-01 886 107 19 34 0.207 

2 P-02 923 106 8 39 0.203 

3 P-03 918 101 15 36 0.204 

4 P-04 905 104 21 36 0.206 

5 P-05 923 101 19 38 0.204 
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Table A8. Data Set ofArtificial Neural Network (ANN) Input and Output Data. 

 

 

 

 

No Well 
X Coordi 

nate (mE) 

Y Coordi 

nate (mN) 

Top Sand  

Depth 

(ft TVDSS) 

Gamma 

Ray Log 

(GAPI) 

Resistivit

y Log 

(Ω-m) 

Neutron 

Log 

(%) 

Densit

y Log 

(gr/cc) 

Initial 

Oil Rate 

(bbl/day) 

1 M-01 213683 116010 925 80 15 45 2.01 437 

2 M-02 212145 116975 888 112 11 34 2.09 837 

3 M-03 213599 117189 919 106 31 35 2.04 1439 

4 M-04 212960 117105 896 111 70 33 2.09 2960 

5 M-05 214385 117150 940 88 30 35 2.04 884 

6 M-06 213385 117660 938 91 12 39 2.10 399 

7 M-07 214164 117449 941 71 58 38 2.04 1151 

8 M-08 213789 116901 901 90 13 40 2.11 1412 

9 M-09 211901 117326 871 100 5 38 2.15 1457 

10 M-10 211289 117247 885 111 6 41 2.12 138 

11 M-11 213602 117950 948 78 24 37 2.02 495 

12 M-12 213972 116526 952 89 14 41 2.02 496 

13 M-13 214514 116791 937 108 27 37 2.12 688 

14 M-14 212575 117080 904 82 17 34 2.14 471 

15 M-15 213120 117450 925 106 14 38 2.05 147 

16 M-16 213192 117807 953 118 6 38 2.17 59 

17 M-17 214908 117244 965 89 30 40 2.15 534 

18 M-18 214700 117500 961 108 11 40 2.12 494 

19 M-19 213815 117525 928 112 74 45 2.09 296 

20 M-20 213852 118212 983 109 11 45 2.11 325 

21 M-21 214935 117555 961 85 105 39 2.02 133 

22 M-22 212267 117614 888 105 12 39 2.10 101 

23 M-23 214500 118171 974 93 17 44 2.03 81 

24 M-24 211162 116870 934 102 9 38 1.98 22 

25 M-25 213195 115689 952 84 27 34 2.11 252 

26 M-26 214725 118000 991 101 6 39 2.01 27 

27 M-27 214645 116591 990 105 12 36 2.10 48 

28 M-28 212921 118329 1012 107 7 34 2.13 6 

29 M-29 213731 115967 926 109 9 37 2.10 52 

30 M-30 213598 115875 906 121 28 41 1.98 146 

31 M-31 213470 116440 938 95 8 33 2.12 70 

32 M-32 213985 116890 911 87 15 37 2.01 95 

33 M-33 213289 117450 931 109 18 37 2.05 118 

34 M-34 214557 117715 903 106 20 37 1.99 28 

35 M-35 214166 117313 939 103 13 37 2.05 57 

36 M-36 214557 117715 951 133 13 33 2.05 73 

37 M-37 214151 117622 943 119 41 34 2.03 67 

38 M-38 214153 116613 946 127 11 42 2.01 62 

39 M-39 213920 117160 913 100 19 36 2.09 84 

40 M-40 212725 117068 896 86 40 34 2.06 180 

41 M-41 211541 117072 855 106 34 39 2.10 126 

42 M-42 213448 115789 904 96 14 40 1.96 110 

43 M-43 212590 116780 888 113 9 36 2.05 45 

44 M-44 213192 116715 903 103 6 38 2.00 77 


