
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ENVIROMIS2018

IOP Conf. Series: Earth and Environmental Science 211 (2018) 012066

IOP Publishing

doi:10.1088/1755-1315/211/1/012066

1

Investigating the peat deposits of the Great Vasyugan Mire 

margin using ground-penetrating radar 

A A Sinyutkina 

 

Scientific Department, Siberian Research Institute of Agriculture and Peat, Siberian 

Federal Scientific Centre of Agro-Biotechnologies, 3 Gagarina st., Tomsk 634050, 

Russian Federation  

 
Abstract. The objectives of this study are to discuss some algorithms for the interpretation of 

GPR data in conditions of wetlands, estimate the peat layer thickness, and assess the surface 

transformation due to peat accumulation in the Great Vasyugan Mire. The study area is located 

in the southeastern part of the West Siberian plain (Middle Ob River watershed) and consists of 

typical Western Siberia pine-shrub-sphagnum, pine-shrub sedge-sphagnum ombrotrophic 

mires and swamp forest with birch, aspen, Siberian cedar, and spruce. Four separate georadar 

complexes corresponding to snow, fibric peat, hemic and sapric peat, and mineral subsoil were 

revealed with a 250 MHz antenna. An isolated area of peatland in depression within the swamp 

forest is identified. At the same time, a distribution of peat accumulation processes outside the 

original depressions was observed. The study has shown surface leveling where the surface 

slope decreases from 5 to 0.1 % in the process of peat accumulation within the border of the 

swamp and mire. An inversion of the surface slopes is observed in areas corresponding to 

intensive accumulation of sphagnum peat within the pine-shrub-sphagnum bog.  

1. Introduction 

Peat has a high proportion of soil carbon due to a relatively high carbon density of organic-rich soil. 

Therefore, it has become increasingly important to measure and model soil carbon storage and change 

in peat stocks to facilitate the management of carbon change over time in the context of climate-

change mitigation activities [1, 2]. The Great Vasyugan Mire plays a key role in the global carbon 

cycle, the formation of hydrochemical and hydrological regimes in the West Siberian Plain, and 

significantly affects regional and global climate processes. This makes it important to study the state 

and dynamics, especially the mire marginal parts in the zone of interaction with adjacent landscapes 

characterized by high variability in the parameters of the abiotic environment and the vegetation [3]. 

The ambiguity of the paludification trend estimates within the mires marginal parts determines the 

need to obtain new data on the current carbon stocks here.  

The carbon storage of peatland is determined by the peat volume, specific stratigraphy, and the peat 

properties, such as the bulk density and organic matter content. Within the peat deposits, the bulk 

density and carbon content differ between the peat types and degree of decomposition [2]. The 

traditional methods of peat investigation and inventory with manual peat coring are slow, labor 

intensive, and costly. The study of peatland stratigraphy by coring can be supported by geophysical 

techniques, such as the ground penetrating radar (GPR). The GPR can be used to provide information 

on the depth and volume of peat deposits at a level of details to information obtained with manual 

techniques [2, 4]. Compared with traditional methods, the GPR is a more efficient tool for estimating 
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the peat thickness and properties, characterizing the sub-surface topography of the peat and mineral 

subsoil interface. The GPR can be used to distinguish layers having differences in the bulk density, 

degree of decomposition, and volumetric water content [5-7], to integrate hydrological and 

geophysical studies of the morphology and stratigraphy [8], to investigate the relationship between the 

mire genesis and bedrock setting and the chronology of peat deposition [9].  

Until now, only few geophysical studies have been reported focusing on West Siberian mires [10, 

11]. These authors draw attention to the georadar sounding possibility to isolate boundaries that are 

well interpretable (for example, between the peat and the mire mineral bottom), but, in addition, a 

number of boundaries difficult for interpretation exist. This determines the need to improve the GPR 

data processing methods. The objectives of this study are to discuss the algorithms for interpretation of 

GPR data in conditions of wetlands, to show robust estimates of the peat layer thickness, and to assess 

the surface transformation as a result of the peat accumulation process within the north-eastern part of 

the Great Vasyugan Mire. In this paper we use sensed GPR data to estimate the peat thickness and 

properties validated with a limited number of ground peat depth measurements.  

 

2. Study sites 

The study area is located within the southeast West Siberian plain in the interfluve of the Bakchar 

River and the Iksa River (Middle Ob River watershed). The territory belongs biogeographically to the 

south taiga zone. The quaternary deposits are represented by fluviolacustrine loams and clays. The 

thickness of the quaternary deposits on the interfluve of the Bakchar River and the Iksa River reaches 

40-60 m [12]. The climate is continental with long, cold winters and short, hot summers; the average 

annual temperature is 0.23°C. The annual amount of precipitation is 473 mm according to the 

meteorological station near the Bakchar village. The average annual evapotranspiration reaches 332 

mm. Positive atmospheric water balances, flat relief, and weak drainability by rivers allows the 

formation and sustainable evolution of mires [13]. Large mire massifs are widely distributed within 

the study area. Change of the mire microlandscapes comes from the swamp forest in the margins to the 

ridge-hollows and ridge-pool complex in the center. A GPR survey was conducted in the north-eastern 

part of the Great Vasyugan Mire (Bakchar Bog) in Tomsk region of Russia (N56º58' E82º36'). The 

study area includes typical Western Siberia pine-shrub-sphagnum, pine-shrub sedge-sphagnum 

ombrotrophic mires, and swamp forest with birch, aspen, Siberian cedar, and spruce in the margin part 

of the mire (Figure 1). The vegetation of the pine-shrub-sphagnum mire is dominated by Pinus 

silvestris, Chamaedaphne calyculata, Ledum palustre, and Sphagnum fuscum. The pine-shrub sedge-

sphagnum mire is occupied by Pinus silvestris, Betula pubescens, Pinus sibirica, Ledum palustre, 

Chamaedaphne calyculata, Carex rostrata, Eriophorum vaginatum, and Sphagnum angustifolium. 

The ombrotrophic mire is surrounded by a swamp forest dominated by Pinus sibirica, Betula 

pubescens, Picea obovata, Populus tremula, Rosa acicularis, Ledum palustre, Carex cespitosa, Calla 

palustris, Menyantes trifoliata, Sphagnum angustifolium, and Bryidae. The swamp forest and mire are 

characterized by uneven terrain with moss hummock, tussocks, and depressions.  

 

Figure 1. Study area: part of the Bakchar Bog (north-eastern part of the Great Vasyugan Mire):  
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1 – Swamp forest with birch, aspen, Siberian cedar, and spruce, 2 – Pine-shrub sedge- sphagnum 

ombrotrophic mire, 3 – Pine-shrub-sphagnum ombrotrophic mire. 

3. Methods 

 

3.1. GPR survey 

The GPR is a geophysical method using a transmitting antenna to generate a high-frequency 

electromagnetic (EM) wave which penetrates the subsurface and returns to the receiving antenna as a 

sequence of reflections from stratigraphic interfaces. The success of layer detecting depends on the 

dielectric contrast between the various layers [2]. Strong GPR reflections occur at the contact between 

peat and bedrock [9, 14], peat and organic-rich lake sediments [8]. A significant contrast between peat 

and the underlying mineral soil will likely occur due to markedly different physical characteristics of 

organic versus inorganic sediments. Changes in the type and the degree of decomposition in peat may 

also cause GPR reflections [8]. The velocity of electromagnetic wave is controlled by the relative 

dielectric permittivity. This is a geophysical property that is strongly dependent on water content and 

organic matter content [6]. EM wave data allow conversion of a time record of reflections to an 

estimated depth [15]. The information from borehole is one of the methods to calculate the depth 

scale. Radar stratigraphic interpretation is based on the definition of sedimentary radar facies that 

result from the distribution and configuration of radar reflection [16].  

The GPR surveys, which covered a total distance of 1.3 kilometers, were conducted in March 2017. 

The winter season was chosen because the GPR antenna and the displacement sensor cannot be moved 

in the snowless period due to the intense microrelief of swamp forest and mire. We employed a GPR 

system “OKO-2” (“Logical systems”, Russia) with 250 MHz shielded antenna and displacement 

sensor. Depending on the ground studied, the antenna may have a penetration depth of up to 8 m and a 

vertical resolution of 0.25 m. However, the depth of penetration is limited by the peat moisture and 

reflection losses from a material with large reflection coefficients, such as clay and, in fact, it was 2 m 

within the study area. Measurements were collected with a step size of 50 mm and a receiver set at a 

100 ns time window. We placed marks as vertical lines on radiograms every 50-100 m during the GPR 

surveys to collected peat core and to binding high-altitude data in summer. The step size between the 

marks was determined by the peat deposits heterogeneity. The marks, the beginning and end of the 

GPR transect were located with GPS (accuracy: 5 m).  

 

3.2. Field study 

Field data were collected in June 2017 to validate the GPR data, the depth and properties of the peat 

deposits. A leveling survey was carried out with automatic level in steps of 50-100 m along the GPR 

profiles to binding high-altitude data. Peat cores were collected manually using a Russian peat corer 

with a 50 cm sample chamber. The sample cores were sliced at irregular intervals (by peat class) down 

to the core base. A total of 16 cores were drilled in peat every 50 m in the pine-shrub sedge-sphagnum 

bog and every 100 m in the swamp forest and the pine-shrub-sphagnum bog along the GPR transect. 

The peat materials were classified using scale of decomposition and guidance for peat class 

determination by visual observation [17, 18]. Visual examinations of peat were done by squeezing the 

undisturbed peat sample in hand. Visual observation of the peat decomposition is based on the 

determination of the plastic property, the plant remains content, the quantity and color of the squeeze 

water. The peat sample is classified as belonging to one of the decomposition categories (Table 1).  

Table 1. Description of peat decomposition categories [17, 19].  

Decomposition categories Description 
I Mostly undecomposed peat Peat is not extruded between the fingers; 

plant remains are visible and easily identifiable;  
peat releases a lot of clear or yellowish water when 

squeezed. 
II Intermediate in the degree of Peat is not extruded between the fingers; 
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decomposition plant remains are visible;  
peat releases a small of brown water when squeezed. 

III Highly decomposed peat Peat is extruded between the fingers; 
the structure of the plant remains is quite indistinct;  
the water, if any is released, is very dark and almost pasty 

Peat class was determined by the composition of visible plant remains, color and degree of 

decomposition of peat sample. A total of 5 classes of peat were determined within the study site (Table 

2).  

Table 2. Description of peat class within the study site [17]. 

Peat class Visible plant remains Color Decomposition 

categories 
Wood  Reddish remains of pine bark Dark brown III 

40-55 % 
Wood-grass Reddish remains of pine bark 

and black roots of cotton 

grass  

Dark brown II, III 
30-60 % 

Wood-moss Reddish remains of pine bark 

and sphagnum remains 
Dark brown II 

25-50 % 
Grass-moss Sphagnum remains and 

cotton grass fibers 
Light brown I, II 

15-40 % 
Moss Easily identifiable sphagnum 

remains 
Yellow, light brown I 

5-30 % 
 

3.3. Data processing 

The data processing was carried out with the GeoScan32 V.2.6 software (Logical Systems, 2016) and 

had the following main steps: 

1. Background signal removal by applying average subtraction. Subtracting the mean is an 

effective method for removing a constant component of the GPR signal to subtract a forward signal 

that does not carry useful information.  

2. Using the gain function to compensate for the signal decay. We used an exponential curve with a 

coefficient of amplification 100 to gain the signal within the GPR transect.  

3. Zeroing of the depth scale in accordance with the peat surface. The surface of the peat deposit is 

determined by an increase in the amplitude of the signal during the transition to another medium.  

4. Identification of the reflector depth representing the peat and mineral subsoil (clay) interface and 

interface between the classes of peat.  

5. Determination of the dielectric permittivity and depth of peat layers. The dielectric permittivity 

was determined at a specific point using the known true depth of the interface between the peat 

deposits and the mineral subsoil and genetic layer of peat with data from the core samples.  

6. Import of the altitude data of the leveling survey to marks of the GPR traces. 

 

4. Results and discussion 

 

4.1. GPR data interpretation 

Four separate georadar complexes with a characteristic wave field distribution are confidently 

distinguished on the radargram obtained with the 250 MHz antenna. Georadar complexes correspond 

to layers of snow; sphagnum and grass-sphagnum fibric peat; hemic and sapric peat; mineral subsoil 

(clay and clay loam). Radargrams from the pine-shrub-sphagnum ombrotrophic mire are shown in 

Figure 2, for example.  

The first complex corresponds to the snow cover layer. Elongated parallel in-phase axes, low-

amplitude oscillations of the direct signal, and a gradual decrease in the amplitude from the lower part 
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of the layer characterized the GPR complex. The upper boundary of the second georadar complex 

corresponds to the mire surface. It stands out quite confidently along the boundary between the axes of 

the white and black phase and a sharp increase in the signal amplitude. Almost complete attenuation of 

the signal at its lower boundary is observed within the georadar complex. 

 

Figure 2. Georadar complex boundary. 

Layers: 1 – Snow; 2 – Fibric peat; 3 – Hemic and sapric peat; 4 – Mineral subsoil 

 

The second georadar complex corresponds to the layer of sphagnum and grass-sphagnum mostly 

undecomposed peat (fibric) in accordance with the data of manual study of peat deposits. The 

boundary between the second and third georadar complexes is not clear and not expressed throughout 

the radargram due to a gradual change in the properties of the peat. The complex is distinguished by a 

slight increase in the signal amplitude in the transition to a denser layer of intermediate and highly 

decomposed peat (hemic and sapric peat layers). The fourth georadar complex corresponds to the 

deposits of the mire mineral bottom built on this site with clays and loams. We note differences in the 

clarity of the peat deposit and the mineral subsoil boundaries between the swamp forest in the 

marginal part of the mire and the pine-shrub-sphagnum bog. The lower boundary of the peat deposit is 

more clear within the mire part of the profile due to large differences in the values of the dielectric 

permeability of the layers between the intermediate in the degree of decomposition of the peat layer 

and clay. The peat deposit boundaries within the swamp forest are less clear in comparison with the 

mire area due to a high degree of peat decomposition and smaller differences in the dielectric 

permittivity of the layers. The boundary is distinguished by a sharp increase in the signal amplitude 

and a change in the pattern of the commonality axes on the radargram. In addition, we used the tool 

"Hilbert transform" to visualize the change of the amplitudes in the absence of clear reflecting 

boundaries within the sections of the profile that are difficult to interpret. We found out that the 

selection of the boundaries between the GPR complexes for a given configuration of the GPR system 

in terms of freezing the top layer is possible at a peat deposit depth of more than 0.25–0.30 m.  

 

4.2. Peat stratigraphy and form of mineral bottom 

4.2.1. Swamp with birch, aspen, Siberian cedar, and spruce. Stratigraphic profiles of the Bakchar bog 

marginal part are shown in Figure 3. The profile begins within the site with mineral soil of heavy 

granulometric composition (core 1). The next three cores are characterized by the presence of wood 

intermediate and highly decomposed peat deposit with a depth of 0.80-1.20 m. Further along the 

profile the peat deposit depth decreases up to 0.15 m (cores 5-8). Highly decomposed wood peat is 

presented. The degree of peat decomposition exceeds 50 %. We found the site long about 300 m with 

peat deposits of more than 0.30 m within the swamp forest. The average depth of the peat deposits is 
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0.90 m, and the maximum value is 1.30 m within the considered layer. The surface of the mineral 

bottom is not flat. Two depressions of the mineral bottom allocated with surface slope reaching 1-1.5 

%. The depressions are filled with peat. The surface was leveled to 0.1 % due to the peat accumulation 

in depressions. 

 

Figure 3. Stratigraphic profile of Bakchar bog marginal part. 1-17 – manual peat cores. 

I – Swamp forest with birch, aspen, Siberian cedar, and spruce, II – Pine-shrub sedge-sphagnum 

ombrotrophic mire, III – Pine-shrub-sphagnum ombrotrophic mire. 

 

4.2.2. Pine-shrub sedge-sphagnum ombrotrophic mire. The border of the swamp forest and the pine-

shrub sedge-sphagnum ombrotrophic mire is located at a distance of 600 m from the profile beginning 

(Figure 3). The thickness of the peat deposit near the border sharply increases from 0.30 to 0.75 m 

(core 9). Further along the profile the peat deposit depth gradually increases up to 1 m within the pine-

shrub sedge-sphagnum mire. Moss and grass-moss mostly undecomposed peat form the upper peat 

layer. Wood-grass and wood highly decomposed peats are present in the lower layer of the peat 

deposit (cores 10-13). The average depth of the peat deposits is 0.84 m, and the maximum value is 

1.10 m within the mire site under study. The mineral bottom slope in the border part reaches 5%. The 

surface of the mineral bottom is almost flat with elevation changes of 0.20-0.30 m within the pine-

shrub sedge-sphagnum mire.  

 

4.2.3. Pine-shrub-sphagnum ombrotrophic mire. The border of the pine-shrub sedge-sphagnum 

ombrotrophic mire and the pine-shrub-sphagnum ombrotrophic mire is located at a distance of 800 m 

from the profile beginning (Figure 3). The thickness of the peat deposit gradually increases from 1.20 

to 2.40 m (cores 14-17) within the mire site under study. The upper layer is composed by the moss 

mostly undecomposed peat (5-10 %). The peat decomposition increases to 30-40 % (intermediate in 

the degree of decomposition) in the lower peat layer. Grass-moss and wood moss peats are prevailed. 

The deposits of the mire the mineral bottom are characterized by a heavy granulometric composition. 

The mineral bottom is almost flat, and has no pronounced slope towards the mire central part. It is 

characterized by the presence of small depressions to a 0.40-0.50 cm depth. Inversion of the surface 

slopes is observed due to intensive accumulation of sphagnum peat. 

 

4.3. The relief influence on the paludification  

A complex of external factors including the geomorphologic conditions of the territories adjacent to 

the mire determines the paludification trend. The relief is one of the leading factors in the formation of 

spatial differentiation of the earth surface. Particularly, the role of the relief is manifested in the 

wetlands due to its influence on the features of the surface runoff and the drainage conditions of the 

territory. The territory under study refers to the zone of moderately progressing paludification. The 

waterlogging processes are most active at the periphery of the mires, especially in the flat relief 

conditions [20]. The mires transgression process has intensified in the past 500 years, and the current 

climate warming has not caused the termination of the mire formation process due to flooding of the 

adjacent territories [21]. 
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We used georadar survey and surface leveling data to calculate the morphometric parameters of the 

mire mineral bottom as an indicator of the initial conditions for the territory waterlogging. The surface 

profiles and the mineral bottom of the mire and the adjacent swamp forest were obtained as a result of 

the study. The studies have shown a significant transformation of the surface as a result of the process 

of peat accumulation. The values of the mineral bottom slopes and surface slope are shown in Table 3.  

Table 3. Mire mineral bottom and surface slope of marginal part of Bakchar bog. 

Site Mineral bottom slope, % Surface slope, % 

Swamp forest 1-1.5 0.1 

Border of swamp forest and mire 5 flat surface 

Pine-shrub sedge-sphagnum 

ombrotrophic mire 
0.4 flat surface 

Pine-shrub-sphagnum 

ombrotrophic mire 
0.02 0.17 

Inversion of the surface slopes and a change of the surface runoff direction occurred within the 

mire part of the profile. The water flow was directed from the marginal part to the mire center during 

the initial stages of peat formation. At present, the water flow is carried out to the territory adjacent to 

the mire. This leads to their excessive moisture and, as a consequence, the appearance of a wood peat 

layer within the forest. The most surface leveling occurs within the swamp forest and the border of the 

mire and swamp forest due to the accumulation of peat, which enhances the process of hydromorphic 

transformation of the territories adjacent to the mire. 

 

5. Conclusions  

Thus, four georadar complexes were identified, corresponding to media with different values of the 

dielectric permittivity as a result of the survey data layer-by-layer interpretation using a 250 MHz 

antenna. The georadar complexes correspond to layers of snow; sphagnum and grass-sphagnum fibric 

peat; hemic and sapric peat; mineral subsoil (clay and clay loam). The boundaries of selected layers 

with e data of contact measurements were compared. A profile of the structure of the peat deposit and 

the mire mineral bottom was constructed. High accuracy of the data obtained with the use of a 

georadar confirmed by the convergence with the data of contact measurements was revealed. As a 

result of the study, it was concluded that GPR methods can be used in conjunction with contact 

measurements to estimate the thickness of the peat deposit and its genetic layers.  

New data have been obtained about the peat deposit structure and the form of the mineral bottom 

within a marginal part of the Bakchar Bog as a result of georadar research, contact measurements, and 

level survey of the mire surface. Depressions of the mineral bottom likely to be paludification center 

were identified. The surface was leveled in the process of peat accumulation. Inversion of the surface 

slopes was observed in areas corresponding to intensive accumulation of sphagnum peat. An isolated 

area of the mire in the mineral bottom depression within the swamp forest was identified. At the same 

time, a distribution of the peat accumulation processes outside the original depressions was observed. 
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