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Abstract. When studying air quality, a key parameter for assessment and forecast is 

information on emission sources. In applications, this information is not fully available and can 

be compensated by air quality monitoring data and inverse modelling algorithms. Because of 

the rapid development of satellite chemical monitoring systems, they are becoming more useful 

in air quality studies. Such systems provide measurements in the form of concentration field 

images. In this paper, we consider an inverse source problem and a corresponding data 

assimilation problem for a chemical transport model. The problem of assimilation of data given 

as images is considered as a sequence of linked inverse source problems. Each individual 

inverse problem solution is carried out by variational and Newton-Kantorovich type 

algorithms. In the numerical experiment presented, an emission source of a primary pollutant is 

reconstucted via the concetration field of a secondary pollutant. Both data assimilation and 

inverse problem solution algorithms are capable of approximating the unknown source. 

1.  Introduction 

The development of algorithms for atmospheric chemical composition monitoring data assimilation is 

a strategic task in the context of re-industrialization and increased public interest in the environmental 

conditions. The chemical composition of the atmosphere is changing all the time and depends on many 

factors of natural and man-made origin. In turn, it has a significant impact on the entire biosphere and, 

in particular, on the well-being and life expectancy [1, 2]. 

Information on the concentration of chemicals can be obtained through various monitoring 

systems. However, it is still impossible to measure all values, including future pollutant distributions. 

Nevertheless, this information is necessary and important in planning and decision-making on a wide 

range of issues, from the design of new industrial facilities or environmental impact assessment of 

various technological events to the choice of personal transportation routes. In this regard, there is a 

need to obtain estimates of the distribution of chemicals in the atmosphere, as well as the forecast of 

their changes. The key problem in the modeling of the atmospheric chemical composition dynamics is 

the description of emission sources [3, 4]. In the near future, the state registration system should 

account for all major industrial, rural, and other economic objects that emit pollutants into the 

atmosphere. However, there are sources, such as small households and transport, that have random 

characteristics and cannot be strictly accounted. One of the possible ways is to use the data 
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assimilation methods. Overviews of modern data assimilation algorithms can be found in [5, 6]. With 

assimilation algorithms it is possible to estimate unknown parameters of the mathematical model, 

which can be used both to predict the composition of the atmosphere and to assess the current state. 

Currently the operational (and quasi-operational) systems use the variational approach for data 

assimilation (e.g. [7]). The disadvantage of the variational approach is that it can be parallelized only 

at the level of the solutions of direct and adjoint problems needed for obtaining the gradient of the cost 

functional. We consider the data assimilation problem as a series of linked inverse problems. Within 

the framework of this concept, we can try various algorithms for solving the individual inverse 

problems, not necessarily variational ones. 

To fit the computational context, we are developing an alternative algorithm based on the use of 

sensitivity operators constructed of an ensemble of quasi-independent adjoint problem solutions [8, 9, 

10]. The sensitivity operator allows transforming the inverse problem stated as a system of nonlinear 

PDEs to a family of operator equations depending on the given set of functions in the space of the 

measurement results. The resulting operator equations are treated by the relevant operator equation 

methods. This algorithm’s parallelization potential is higher due to the independent solution of the 

adjoint problems of the ensemble. 

The objective of the paper is to present the first results on the data assimilation of concentration 

field images in a 2D atmospheric chemistry transport model with the algorithm based on the 

sensitivity operator inversion and to compare them with the solution of the variational algorithm. 

2.  Methods and algorithms 

2.1.  Data Assimilation Problem 

Let us consider a two-dimensional spatial domain = [0, ] 0, ]X Y  , a spatio-temporal domain 

= [0, ]T T  , and an advection-diffusion-reaction model on the domains 
,

= [ , ] T 
 

 
 

  .  

 
,

( ) ( ( ) ) ( , ) = ( , ) , ( , , ) ,l

l l l l l l ldiv u div diag grad P t t f r x y t
t  


     

 
 


      


 (1) 

 
,

= , ( , , ) /{ = },l lg x y t t
 

 
 
 

  (2) 

 0= , ( , ) , = ,l l x y t     (3) 

for =1, , cl N , where 
cN  is the number of considered substances, ( , , )l x y t  denotes the concentration 

of the thl  substance at a point 
,

( , , )x y t
  
 

 , and   is the vector of 
l  for =1, , cl N . The function 

( , , )x y t  corresponds to the diffusion coefficient, ( , , )u x y t  denotes the advection speed, 
lf , 

lg , 0

l  are 

a priori source function, boundary conditions, and initial conditions, correspondingly, 
lr  is a control 

function (uncertainty). Let 2 ,
( ; )

N
cr F L

  
 

   R , where F  is a set of admissible sources. The 

destruction and production operator elements , :[0, ]
N

c
l lP T    R R  are defined by the chemical 

kinetics system. We assume all the functions and model parameters to be smooth enough for the 

solutions to exist and the further transformations to make sense. 

Direct problem: Given  , f , g , 0 , r , determine   from (1)-(3). Let 0[ , , ]r    denote the 

solution of the direct problem. 

Let us define a set of the measurement results in the interval and the operator 
,

A
  
   that maps the 

uncertainty function (in our case this is r ) into the measurement data in the assimilation window 

,  
 

:  
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 (5) 

 

Inverse problem: Given ( )   and 
,

I
  
   and some partial information on 

,
I

 


 
  , find 

,
r

  
   and 

, 


 
   from 

 
, , , ,

( ( ), ) = .A r I I
       

  
       
         (6) 

 Let us consider a system of the intervals (assimilation windows)  
1

=0

= [ , ] 0, ]
N

k wk

k

T 


   such that 

1
=

k k
 

  and <
kk

  , 
0

= 0 , 
1

=
N

w T


. 

Data Assimilation Problem: Solve a sequence of 
wN  inverse problems in assimilation windows  . 

In the k -th problem = 0 , =
k

  , and the available data are  

  [0, ] ( ), , = 1,..., 1,
k

T

wI t t k N   

Find ( )r t  and ( )t  for 0, ]t T . 

By analogy with 4DVAR, let us define the 4DIP algorithm solution of the data assimilation 

problem in the time moment 
k

 : 

 

11[ , ]

11[ , ] [ , ] [ , ] [ , ]

1[ , ] [ , ]

( ), 

( ) = [ ( ), ]( ), ,

[ ( ),0], 

kk k

k k k k kk k k kk k

k k kk kT

t t

t r t t

t

 

       

  

 

     

   







 



 





 

 

11[ , ]

[ , ] [ , ]

( ), 

( ) = ( ), .

0, 

kk k

k k kk k k

k

r t t

r t r t t

t
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   



 



 



 





 

where [ , ]
kk

r    is the solution of the inverse problem (6) with  

 [ , ] [0, ]( ) = ( ), [ , ].
k kk kTI t I t t     (7) 

If the inverse problems in 4DIP are solved with the minimization of the Tikhonov functional  

 
22 11, , , , ,[ , ]( ) = ( ( ), ) min,

kk k

R Q

J r r A r I
           

         
             
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then the method is a modification of 4DVAR with weak constraints (in [7] the initial state is fitted as 

well). Here R  and Q  denote the weights in the corresponding norms. In the numerical experiments 

we will use iterative regularization in the variational method instead of the Tikhonov one (i.e. = 0R ). 

In this paper, we consider both the 4DVAR and 4DNK methods, where NK instead of IP in the 

abbreviation 4DIP denotes that we use the Newton-Kantorovich type algorithm analogous to [9, 10] to 

solve the inverse problems within assimilation windows  . 

2.2.  Newton-Kantorovich Type Algorithm 

In this section we consider the interval [0, ]T , but without loss of generality the same can be carried 

out for the interval ,  
 

. By combining the results obtained in [9, 10] for the diffusion-reaction 

models, the following relation can be derived. For any
mesh U ,    2 1

,r r F ,  

            2 1 2 1 2 1

( ;R ) ( ;R )2 2

( ) ( ), = , ; , ,N Nc cL LT T

A r A r h r r h r r
 

 

   
 

 (8) 

where  0,
(.) = ( (0),.)

T
A A  ,    2 1

, ;r r h 
 

 is the solution of the adjoint problem  

    2 1
( ) ( ( ) ) ( ( , , ) ) = ,l

l l l lugrad div diag grad G t r r h
t

  


         
   

 

 ( , , ) ,Tx y t   (9) 

                 2 1 2 2 1 1 2 1* *( , , ) = ( , ) ( , , ) ( ) ( , , ) ,G t diag P t P t diag t          (10) 

 = 0,( , , ) /{ = },Tx y t t T   (11) 

 = 0, ( , ) , = .x y t T   (12) 

In (10),  *.  denotes the ajoint matrix with respect to the weighted Euclidean scalar product on 
N

c
R , the 

symbol   denotes the divided difference operator that maps the vector-function :[0, ]
N N

c cS T  R R  

to the vector function :[0, ]
N N N N

c c c cS T


   R R R , such that for any [0, ]t T  and , ,
N

c R   

 ( , ) ( , ) = ( , , ) .S t S t S t           (13) 

The following relation holds for any r :  

   *
( ) = [ , ] ,U U UI A r M r r r r w    (14) 

      * *
= [ , ] [ , ] ,U U Uw M r r M r r r r I    (15) 

where  *
r  is the exact solution of the inverse problem,  

    
   

2 1

2 1

( ;R )=1 2

R

[ , ] : ,
, ; ,

U

N
cL

T

F

M r r
r r r u r e 

 







 

    



 (16) 

 
( ;R )

2=1
( ;R )

2=1

R

: , = , ,
( ),

NU U cL
TN

cL
T

F

A I I u e
r A r u e

 
 













 








 (17) 

and  
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 ( ) ( ) = [ , ] .U U UA r r A r M r r r r      (18) 

As the projection basis U , we consider the trigonometric basis:  

  = | 0 ,0 ,0 , ,x x y y t t mes
t x y

U e L                  (19) 

  
=1

1
( , , ) ( , , ) ( , , ), =

= ,

0,

= 1, , , = 1, , , = 1, ,

N
c

m
m

t x i y j

t x y ij

l

t x y

C T t C X x C Y y l
e

l

m N i N j N

  

   




 
 
 
 

 

 (20) 

 
2 cos , > 01

( , , ) = .

1, = 0

t

C T t T
T








  
  

 



 (21) 

For the solution of (14), we apply the Newton-Kantorovich type algorithm based on the truncated 

SVD with the use of the right inverse matrices [11, 12, 9]: 

 1. Define the initial approximation  0
r , the step > 0 , and the maximum allowed 

conditional number 
maxcond . 

 2. Let us run iterations by the conditional number of the sensitivity operator matrix, starting 

with =1 : 

  (a) We compute the matrix  k
m  of the sensitivity operator    

[ , ]
k k

UM r r  and the singular 

value decomposition of     
T

k k
m m . Let 

l  be the singular values of  k
m . If 

max> cond , the algorithm 

stops. 

  (b) If not, we define the increment  

             = ( ) ,Pr
T T

k k k k k

U U
src p

r m m m I A r


  
  

 

where  

 
=1

,
Pr  z =

0,

N
c

l src

src
src l

z l L

l L

   
 

  
, (22) 

      1 1 12 R
=1

= ., , / < / ,
pT

k k l

l p p

l l

U
m m U    





 


   
  

  (23) 

 .,. R
 is the Euclidean scalar product in R ,  

( )

=1

rank C

l l
U  is the orthonormal system of left singular 

vectors of  k
m . 

  (c) We choose        1
=

k k k k
r r r 


  to satisfy the condition (dividing  k

  several times by 2, 

if necessary)  

        1 1
( ) < ( ) , ( ) < ( ) .

k k k k

U U U UI A r I A r I A r I A r
 

 
   

R R
 

  (d) The algorithm continues to work until the iterations are stabilized. After stabilization, the 

number of singular values and vectors under consideration increases: :=  .  

For numerical solution of the multi-dimensional problem, a splitting scheme with respect to the 

spatial dimensions and physical processes is applied. Discrete-analytical approach with locally adjoint 

problems is used to obtain consistent numerical schemes for the individual splitting stages [13]. 
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3.  Results 

As an example, we consider the modified atmospheric chemistry transformation mechanism from [14]. 

The reaction rates depend on time. The chemical transformation system can be rewritten in the form of 

a system of ordinary differential equations of the production-destruction type forming the reaction 

term of (1). 

 

Figure 1. Exact source function cross section at = 300y m . 

 

 

 

 

(a)  (b) 

Figure 2. Reconstructed source at the domain 
T  cross section = 300y m  with variational algorithm: 

(a) as inverse problem solution and (b) as data assimilation problem solution with two windows. 
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(a)  (b) 

Figure 3. Reconstructed source at the domain 
T  cross section = 300y m  by the Newton-Kantorovich 

type algorithm as (a) inverse problem solution and as (b) data assimilation problem solution with two 

assimilation windows. 

 

Assume that the distributed source emits NO  only (i.e.  =srcL NO ) with the intensity presented in 

Figure 1. Concentration field dynamics images of 
3O  across the whole domain are available as the 

measurement data (i.e.  3=mesL O ). Projections of these images to U  are used as 
UI . In the data 

assimilation scenario, the time interval was split into two equal non-intersecting intervals (assimilation 

windows). In the inverse problem scenario there is only one assimilation window [0, ]T . 

The initial guess to the sources is  0
= 0r . The model parameters are 2 1= 10m s  , 1= (1,1)u ms . 

The grid parameters are =1800T s , = = 600X Y m , the number of points in time = 100tN , the number 

of points in space = = 24x yN N , and the number of substances = 22cN . The numbers of projection 

functions for the Newton-Kantorovich algorithm were = = 5x y  , = 16t . 

The results of the source reconstruction with the help of the variational algorithms are presented in 

Figure 2 and with the Newton-Kantorovich type algorithm, in Figure 3. Both calculations were made 

on a workstation with 8 parallel computation cores. 

4.   Discussion 

The numerical experiment demonstrates the difference between the inverse problem and the data 

assimilation problem. In the inverse problem, all measurement data are available at the beginning of 

the solution process, while the portions of measurements in the data assimilation case arrive in the 

course of calculations. In the data assimilation scenario, the windows do not intersect. As a result, in 

Figures 2 (b) and 3 (b) we can see an additional discontinuity at the window border, in contrast to 

Figures 2 (a) and 3 (a), correspondingly, which show the inverse problem solution. The lack of 

computational resources did not allow us to take higher resolution (defined by , ,x y t   ) for the 

Newton-Kantorovich type algorithm. Nevertheless, both algorithms were able to estimate the 

unknown source in all the presented cases. It seems that the edges are more sharp in Figure 3 (b) 
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compared to Figure 3 (a), because the time interval of the reconstruction was two times less. Hence, 

the same number of data 
x y t     is used to reconstruct less unknown variables.  

5.  Conclusions 

Two types of inverse modeling problems were considered for a transport and transformation model of 

atmospheric pollutants: an inverse source reconstruction problem and a data assimilation problem. The 

measurement data were available in the form of concentration field images. The data assimilation 

problem was considered as a sequence of linked inverse problems. As inverse problem solution 

algorithms, variational and Newton-Kantorovich type algorithms were compared. In the numerical 

experiment, an emission source of a primary pollutant was reconstucted via the concentration field of a 

secondary pollutant. In the above-considered scenario, both algorithms were capable to estimate the 

unknown source.  
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