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Abstract. Assessment of the state of the environment with observational data is one of the most 

urgent modern issues. Such an assessment can be made using forecast models based on data 

assimilation systems. One of the most popular algorithms for data assimilation is the ensemble 

Kalman filter, in which the forecast error covariance is estimated using an ensemble of forecasts 

for perturbed initial fields. Parameter estimation is an important part of atmospheric chemistry 

modelling. In particular, pollutant emission may be a parameter to be estimated. A single-time 

estimation based on observations may not give the required accuracy. In this context, the method 

of ensemble smoothing (EnKS), which uses data from the entire time interval to estimate the 

parameter at a given time, is becoming increasingly popular. In this paper, we consider a 

generalization of a previously proposed method called the ensemble π-algorithm, which is a 

variant of stochastic ensemble Kalman filter. The generalized algorithm is an ensemble 

smoothing algorithm in which ensemble smoothing is performed for the sample average value 

and then the ensemble of perturbations is transformed. The proposed algorithm is stochastic. 

Numerical experiments with a 1-dimensional advection-diffusion model are carried out with the 

smoothing algorithm proposed in the article. 

1. Introduction 

Assessment of the state of the environment from observational data is one of the most urgent tasks at 

present. Such an assessment is made using forecast models based on data assimilation systems. The data 

assimilation involves the joint use of observations and a mathematical model for optimal estimation of 

the space-time distribution of the investigated quantities. 

There are an enormous number of data assimilation techniques, but, from the point of view of the 

mathematical formulation of the problem, they all use one of two approaches, variational or dynamical-

stochastic. Since observational data are known with errors of a random nature, all methods of 

assimilation must take into account the statistical properties of measurement errors. The so-called 

‘noise’ of models, which is important for the assessment of the state of the environment, also has a 

statistical nature. The problem of taking into account the statistical characteristics of forecast and 

observation errors is naturally solved when applying the dynamic-stochastic approach (the Kalman 

filter). Numerical realization of the Kalman filter for modern nonlinear models is impossible and, thus, 

different approximations are currently used. The leading position is taken by the ensemble approach, in 

which the covariance of forecast errors is estimated using the ensemble of forecasts for perturbed initial 

fields [1]. The implementation of the ensemble approach also contains technological difficulties, related, 

in particular, to the large dimension of the matrices under consideration. 

The task of parameter estimation is an important part of the problem of atmospheric chemistry 

modeling. In particular, pollutant emission is the parameter being estimated. The study of the 

distribution of greenhouse gases in space and time, as well as the assessment of fluxes from the Earth's 

surface of these gases, is one of the urgent tasks of monitoring the state of the environment. 

The parameter of the model can be estimated with successive assimilation in the presence of a large 

time series of observations with the ensemble Kalman filter. A single-time estimation procedure based 

on observations may not give the required accuracy. In this connection, the method of ensemble 
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smoothing (EnKS), which uses data from the entire time interval to estimate the values at a given time, 

is becoming increasingly popular. Now the ensemble Kalman filter and ensemble Kalman smoothing 

are very popular and are used in atmospheric chemistry modeling. For example, many works are 

devoted to the estimation of greenhouse gas fluxes. In many works, both the ensemble Kalman filter [2] 

and ensemble smoothing are applied [3, 4, 5, 6]. 

In the ensemble Kalman filter, two approaches can be distinguished: the ‘stochastic filter’ and the 

‘deterministic filter’. At present a large number of studies are being carried out comparing stochastic 

and deterministic ensemble filters [1]. Since in the ensemble Kalman filter the optimal estimate is the 

ensemble average, for problems with the linear model the deterministic and stochastic Kalman filters 

yield close results. 

In this paper, we consider a generalization of the previously proposed ensemble π-algorithm [7], 

which is a variant of stochastic ensemble Kalman filter. The generalized algorithm is an ensemble 

smoothing algorithm in which ensemble smoothing is performed for the sample average value, and then 

the perturbation ensemble is transformed. The proposed algorithm is stochastic. Model numerical 

experiments for the 1-dimensional advection-diffusion model were carried out. The smoothing 

algorithm proposed in the article was used in experiments to estimate the model parameter, namely, the 

emission of a passive impurity. 

 

2. Problems of optimal filtering and smoothing 

Let us write the nonlinear dynamical system in the form of the process equation 

                                                          1 1( )t t t

k k kf   x x η                                                                       (1) 

and the equation of observation 

( )t t

k k kh y x ε , 

where h is, generally speaking, a nonlinear operator, which transforms the forecast values into an 

observable variable, 1

t

kη  is the vector of ‘model noise’, 
t

kε is the observation error vector, 
t

kx  is the 

vector of the estimated variables at time kt , 
t

kε  and 1

t

kη are the Gaussian random variables 

   1 1 1[ ] , [ ]
T T

t t t t t t

k k k k k kE E    ε ε R η η Q . We will consider a ‘true’ value 
t

kx . 

The task of optimal filtering consists in searching min J  by observations at the time Kt  (the final 

moment of time), the smoothing task is in searching min J  at the time ,( 0,..., )kt k K , where 

( ) ( )a t T a t

k k k kJ E x x x x   . 

That is, J is the trace of the estimation error covariance matrix. The solution of the filtration problem in 

the linear case is the Kalman filter algorithm [8]. In [8], formulas for the optimal smoothing algorithm 

are also given (in the particular case). 

 

3. Parameter estimation in the data assimilation procedure 

Consider the generalization of the equation of the process 

                                                                   1 1 1( , )t t t t

k k k kf    x x α η ,                                                     (2) 

and observational data 

( , )t t t

k k k kh y x α ε , 

where 
t

kα  is the vector of parameters. We assume that the parameter does not change with time: 

1

t t

k k α α . 

Consider the generalized problem of estimating a vector [ , ]Tz x α . Omitting the intermediate 

calculations, we immediately write down the result of the estimation procedure in general form: 
1 1

0 0( ) [ ( , )] ( ) [ ( , )]a f T T f f T T f f

xx x x xx x x x xx xh h h h h h h h 

       x x P P R y x α P P R y x α , 
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1 1

0 0( ) [ ( , )] ( ) [ ( , )]a f T T f f T T f f

x x x xx x x xx xh h h h h h h h  

       α α P P R y x α P P R y x α . 

In these formulas 
xP  denotes cross-covariance errors of x  and α , P  is the covariance error matrix of 

α , 
xh  and h  are linearized operators at x  and α , respectively. If h does not depend on α , the 

estimate of a
x  is carried out according to the same formula as in the usual Kalman filter [9]. 

In modern studies on the atmospheric chemistry assimilation, this approach is applied to the 

assessment of greenhouse gas fluxes [2]. At the same time, in most papers the estimated fluxes are 

considered to be an independent variable, and the model for the propagation of passive gases in the 

atmosphere is included in the observation operator [3 4, 5, 6]. With this approach, the concentration 

values themselves are not estimated, and in this formulation the problem will not be optimal. 

 

4. The ensemble Kalman filter. Ensemble smoothing 

The derivation of the formulas of the ensemble Kalman filter was first given in Evensen's papers [9]. 

The stochastic ensemble Kalman filter consists of the ensemble of forecasts 
,{ , 1, , }f n

k n Nx  

                                                                
, ,

1 1( )f n a n n

k k kf   x x η                                                          (3) 

and the ensemble of analyses 
,{ , 1, , }a n

k n Nx  

                                                     , , ,( )a n f n n n f n

k k k k k kh     x x K y ε x .                                              (4) 

Ensembles (3) and (4) set a sample of ‘true’ values, with the sample average value being the optimal 

estimate, and the deviation from the mean being the ensemble of analysis and forecast errors, 

respectively. As shown in [8], the probabilistic average is the optimal estimate of the filtration and 

smoothing problems in the sense of the minimum of the trace of the estimation error covariance matrix. 

In the ensemble Kalman filter, the ensemble average is an approximation of the probabilistic mean. To 

implement the ensemble Kalman filter algorithm, it is required to specify an ensemble of observation 

errors { , 1, , }n

k n Nε  as well as an ensemble of forecast errors , , ,{ , 1, , }f n f n f n

k k k n N  dx x x , where 

, ,

1

1 N
f n f n

k k

nN 

 x x  and the model noise ensemble 1{ , 1, , }n

k n N η :  1 1[ ]
T

n n

k k kE   η η Q . 

The matrix 
kK  has the form 

1( )f T f T

k k k k k k k

 K P H H P H R , 

where 
f

kP  and 
kR  are matrices estimated by the ensemble 

   , ,

1 1

1 1
,

1 1

N N
T T

f f n f n n n

k k k k k k

n nN N  
 P dx dx R ε ε , 

kH  is the linearized operator 
,( )f n

kh x  with respect to ,f n

kx : 

,( ) ( )f n f

k k k kh h x x H ε . 

The deterministic ensemble Kalman filter (an analysis step) consists of an equation for the mean value 

, , ,( )a n f n n f n

k k k k kh   
 

x x K y x  

and the ensemble of analysis errors with the corresponding covariance matrix satisfies the Kalman filter 

equation ( )a f

k k k k P I K H P  [8]. 

An algorithm of ensemble Kalman smoothing (EnKS) is proposed in [11]. Let the observation data 

be given 
1{ , , , }k k k lY y y y   at times { , , }k k lt t 

. If the observation errors are Gaussian random 

variables and, in addition, the observation errors at different times do not correlate, the EnKS algorithm 

can be performed sequentially as data is received, using data at a time k jt   to estimate values at a time 

kt . At the final time, the results of the ensemble Kalman filter (EnKF) and EnKS are the same [11]. 

The formula for the ensemble member in the EnKF algorithm has the form 
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 , , , , 1 ,

1

1
( ) ( )

1

N
T

a n f n f n f n T f T n n f n

k k k k k k k k k k k k

n

h
N





      
x x dx dx H H P H R y ε x , 

where the estimation is carried out at a time kt  according to the observations at the same time. 

The formula for the ensemble member in EnKS has the form 

 , , , , 1 ,

( ) ( 1) ( 1)

1

1
( ) ( )

1

N
T

a n a n a n f n T f T n n f n

k j k j k j k j k j k j k j k j k j k j k j k j

n

h
N



          



      
x x dx dx H H P H R y ε x . 

In this formula the index ( )k j  means that an estimate is made at time 
kt  from the data at time k jt  . 

As shown in [10], at the time kt  the matrix of ensembles { , 1, , }n

k kx n N X  after applying the 

smoothing procedure from the data at times 
1 2{ , , , }k k k lt t t  

 can be represented in the form 

1

k l
KS KF

k i k

i k



 

 
  
 
X V X , 

where 
KF

kX  is the result of applying EnKF at the time 
kt , 

iV  is the matrix of transformations calculated 

by the ensemble of perturbations and residuals (the difference between the observations and the forecast 

at the observation point). 

In the case where the dynamic system also includes a parameter, the EnKF and EnKS algorithms can 

evaluate the model parameter in addition to the predicted variable. If the operator 
kH  is linear and does 

not depend on the parameter, the parameter is evaluated independently. In the EnKF algorithm, the 

parameter estimate has the form 

 , , , , 1 ,

1

1
( ) ( )

1

N
T

a n f n f n f n T f T n n f n

k k k k k k k k k k k k

n

h
N





      
α α dα dx H H P H R y ε x . 

The formula for the ensemble member of the parameter in EnKS is 

 , , , , 1 ,

( ) ( 1) ( 1)

1

1
( ) ( )

1

N
T

a n a n a n f n T f T n n f n

k j k j k j k j k j k j k j k j k j k j k j k j

n

h
N



          



      
α α dα dx H H P H R y ε x . 

 

5. Approaches to optimizing the number of computations in ensemble algorithms for large-

dimensional forecast models 

The tasks of data assimilation and estimation of parameters in the modeling of the environment are 

extremely time consuming, requiring large expenditures of computer resources. The use of ensemble 

algorithms partially allows one to solve this problem, but still the task remains extremely laborious. To 

carry out the analysis step, algorithms are used to transform the ensemble of forecasts to obtain an 

ensemble of analyses. One such algorithm is an ensemble π-algorithm [7], which is a stochastic Kalman 

filter. In this algorithm we perform operations with matrices of the order of the ensemble dimension. 

This algorithm will be described in more detail in the next section. 

To obtain a more easily implemented computer algorithm, the assumption of the stationarity of the 

time series of forecast errors for an advection - diffusion model with random noise can be used. It can 

also be assumed that estimation errors in assimilation represent a stationary random sequence. In this 

case it is possible to use averaging over time instead of averaging over the sample [9]. The idea of 

estimating the covariance by the time series is proposed in [10], in which the author suggests an 

approach called ‘ensemble optimal interpolation’ (EnOI). A similar approach is considered in [12]. 

 

6. Ensemble π-algorithm 

An ensemble π-algorithm was proposed in [7]. Further, we give the main formulas of this algorithm. We 

write the equation for the deviation from the mean value , ,n a n a n

k k k dx x x , where , ,

1

1
N

a n a n

k k

n
N



 x x : 

                              , , 1 , ,( ) ( ) ( )n f n f n a T n f n f n

k k k k k k k k kh h       
 

dx x x P R ε x x .                                          (5) 
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We express the matrix a

kP  in terms of n

kdx : 

                                                             
1

1

1

N
T

a n n

k k k

nN 



P dx dx .                                                     (6) 

If we substitute the expression (6) into equation (5), we obtain a system of equations with respect to 
n

kdx , which can be written in the matrix form as 

                                                               T T T T D F Π D ,                                                             (7) 

where D is a matrix of dimension ( L N ), whose columns are vectors { , 1, , }n

k n Ndx , L is the 

dimension of these vectors, Π  is the )( NN  -matrix: T T T 11
( )

1N

 


Π D H R HF E , F is the matrix 

with columns { , 1, , }n

k n Nf : 
, ,n f n f n

k k k f x x . 

It should be emphasized that in the derivation of formula (7) the operator 
,( )f n

kh x  was linearized at 

,f n

kx . Elements of the matrix Π  are computed for the matrices 
kH and 

kR  for the ensemble of values 

{ , 1, , }n

k n Ndx and do not depend on the grid node. 

For convenience of calculations, the index ‘k’ will be omitted in the following. It follows from (7) 

that 

                                                               
T T 1 T( ) , D I Π F                                                           (8) 

where I is the identity matrix. It is shown in [12] that the matrix Π  has the form 

                                                     
1

T 2( 0.25 ) 0.5 ,  Π C I I                                                           (9) 

                                        
T T 1

1 2

1
( ) .

1N

   


C F H R HF Ε C C                                                   (10) 

In these formulas Ε  is a matrix whose columns are equal to a vector 
n

kε . More detailed calculations are 

given in [7]. 

After calculating the matrix D, the covariance matrix 
a

kP  and the analysis for the ensemble average 

are determined: 

, , T 1 ,1
( )

1

a n f n T f n

k k k kh
N

    
 

x x DD H R y x . 

The ensemble of corresponding analyses in matrix form can be written as 
,a a n

k k X x D , 

where 
a

kX  is the ( L N ) matrix whose columns are vectors 
,{ , 1, , }a n

k n Nx . 

The ensemble π-algorithm is a stochastic filter in which the ensemble analysis error is obtained using 

a transformation matrix 
T 1( )I Π  (8) independent of the grid node. This approach makes it possible to 

implement the algorithm locally, while implementing an ensemble π-algorithm requires operations with 

matrices of the order of the ensemble dimension. As can be seen from the formulas for estimating the 

parameter in the ensemble algorithm, the matrix Π  is the same for estimating the predicted variable and 

the model parameter. Due to this property, the ensemble π-algorithm can be easily generalized to the 

case of estimating the parameters of the model. 

The covariance matrices of ensemble smoothing have properties analogous to the properties of the 

ensemble Kalman filter matrices. For this reason, the ensemble π-algorithm can be generalized to the 

case of ensemble smoothing. Thus, the estimate at time kt  based on the data at time k jt   can be made 

for the ensemble average value, and the ensemble of perturbations is determined using the 
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transformation matrix jΠ  computed at time 
jt . To obtain an ensemble of perturbations, the same 

matrix jΠ  is used to apply the smoothing procedure for a given time interval 
1 2{ , , , }k k k jt t t  

. An 

important property of this algorithm of smoothing is that it will be stochastic as the originally proposed 

smoothing algorithm [10]. In addition, it can be implemented locally, assessing parameters in a given 

region. 

 

7. Numerical experiments with a one-dimensional advection-diffusion model 

Numerical experiments were carried out with a one-dimensional advection-diffusion model of a passive 

impurity. The equation of the model has the form 

                                                   
2

2

2
( , )u b g x t

t x x

    
  

  
,                                                   (11) 

where   is the predicted variable, ( , )g x t  is the source of the passive impurity. The equation was 

solved by a semi-Lagrangian method, and time-splitting was used. The equation was solved on an 

interval (0,1) , with periodic boundary conditions being specified. 240 grid nodes were considered, 

1u  , 2 30.6 10b   . 

Numerical experiments were carried out with this model using the EnKF and EnKS algorithms based 

on the ensemble π-algorithm. To implement the algorithm, equation (9) is solved; that is, the square root 

of the matrix  0.25C I  is calculated. In [7], an approximate estimate of the root of the matrix is 

proposed. In the present study, an algorithm based on a more general approach is used. One can see 

from formula (13) that this matrix is nonsymmetric. To calculate the square root of this matrix, an 

algorithm proposed in [13] based on a triangular Schur decomposition can be used. It can be shown that 

the real parts of the eigenvalues of the matrix  0.25C I  are positive and, therefore, the algorithm of 

square root calculation proposed in [13] can be used. In calculating the inverse matrix 
T 1( )I Π , it was 

symmetrized using a standard operation of multiplication by the transpose matrix 
T( )( ) ( )T T   I Π I Π D I Π F . Eigenvalues and eigenvectors of the symmetric matrix 

T( )( ) I Π I Π  

are used to solve this equation. When calculating the inverse matrix in the π-algorithm, there are no 

problems caused by the presence of zero eigenvalues and no singular value decomposition is needed, in 

contrast to the algorithm for a stochastic ensemble Kalman filter proposed in [10]. 

Consider the finite-difference analog of equation (11): 

1k k k k  φ A φ g , 

where k is the time step number. The given initial values 
0

t
φ , 

0

t
g were considered ‘true values’. To 

obtain the initial data for the forecast model 
0

d
φ , a perturbation was added to the ‘true’ initial data 

d t

0 0 , 0N(0,s )  φ φ δ δ . N (a, b) denotes a random variable distributed according to the normal law 

with a mathematical expectation equal to a and variance equal to b. The initial value 
0

d
g  was assumed 

to be 0. 

To organize numerical experiments, we specified an ensemble of initial fields 
n d

0 0 ,n n

0 ens=N(0,s ),n=1, ,N  φ φ δ ; 
n d n

0 0 g g g δ , 
n

g 0 ensN(0,dg ),n=1, ,Nδ ; observations 

t

0 ( )0 0 0 0, N 0,ε  y φ δ δ ; ensemble of observations with perturbations 

0 ( )n n n

0 0 0 0 ens, N 0,ε ,n=1, ,N  y y δ δ . The number of the ensemble members is denoted by 
ensN . The 

observations were assumed to be known at all grid nodes. The forecast was carried out for 
tN = 240 

steps in time, the assimilation was carried out at each time step, and the values of the variables φ  and 

g  were estimated. The numerical experiments were carried out for 
0 0dg 0.010s =ε   , 

ensN = 20. 
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In all numerical experiments 2

0R I  was considered. In the analysis at the grid node l, the 

observations were taken from the interval ( , )l id l id  . In the analysis at the grid node l, instead of the 

matrix R , a matrix 
2exp[ 0.5( / ) ]il bc R R  was taken, where 

il  is the distance between the grid 

node and the observation, ' '  is the sign of the element multiplication. In the experiments the values of 

5, 5id bc x    ( x  is the grid spacing) were taken. To prevent divergence of the algorithm, a so-

called ‘inflation factor’ was used. That is, at the forecast step, the ensemble of perturbations multiplied 

by a constant. In the numerical experiments carried out, the inflation factor was taken equal to 1.3. 

 

 
Figure 1. Time behavior of the estimated parameter. 

 

The algorithm of ensemble smoothing was performed with time lags nt = 10 and nt = 20. That is, to 

estimate the values at a time kt , observations were used at times 
1{ , , , }k k k ntt t t 

. The ‘true’ value of 

the parameter t

kg  for all time steps was given as a discrete analog of the function 
0 ( )g x , where 

0

0.1, 0.375 0.625
( )

0, 0.375 0.625.

x
g x

x x

 
 

  
 

The figures show the results of the numerical experiments. Figure 1 shows the behavior of the 

estimated parameter g  with respect to time using the EnKF algorithm. The values are given for 

different times (ntime). Figure 2 shows the root-mean square error of the parameter g  estimate for the 

EnKF and EnKS methods. In this case different values of the time lag nt were considered. EnKS1 

designates the smoothing algorithm with nt = 10, EnKS2 - nt = 20. It can be seen from the figures that 

the assimilation algorithm allows us to estimate a parameter that is not directly measured. At the same 

time, the accuracy of the estimation at the first time steps increases with the use of ensemble smoothing 

in comparison with the ensemble Kalman filter. 

0 50 100 150 200 250
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

grid nodes

g

 

 

ntime=1

ntime=4

ntime=8

ntime=10



ENVIROMIS2018

IOP Conf. Series: Earth and Environmental Science 211 (2018) 012049

IOP Publishing

doi:10.1088/1755-1315/211/1/012049

8

 

 
Figure 2. Root-mean square error of parameter estimation. 

 

8. Conclusions 

The problem of assessing the state of the environment using observations is currently being solved with 

the help of data assimilation systems. Atmospheric chemistry models and meteorological fields of wind 

speed, temperature, etc. are used in these systems. As a mathematical formulation of the problem, the 

ensemble Kalman filter or the ensemble Kalman smoothing method are increasingly used. 

An algorithm based on the algorithms of the ensemble Kalman filter and ensemble Kalman 

smoothing for estimating the parameters of a model was proposed in this article. It has been shown that 

the algorithms allow estimating the parameters of the model, while the use of ensemble smoothing 

makes it possible to improve the accuracy of the estimate by using additional measurement data. 

An important application of this algorithm is the problem of estimating emissions of greenhouse 

gases in the atmosphere. It should be emphasized that solving this large-scale problem requires joint 

efforts of multiple scientific teams. For example, see papers [4] and [6].  
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