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Abstract. Microalgae are one of the potential biomass to produce biofuel energy. The popular 

cultivation method of microalgae is using open raceway pond. The open raceway pond is 

waterway included with paddlewheel. Cultivation microalgae in open raceway pond using water, 

nutrient, CO2, and maintaining the pH condition. To avoid the contamination from unwanted 

microalgae, the Algae Biomass and Energy System Research and Development (ABES), 

University of Tsukuba cultivated the polyculture microalgae to minimize the contamination that 

make unstable ecosystem in culture. The disadvantages of microalgae culture in open raceway 

pond is difficult to control the environmental parameter such as temperature and solar radiation. 

However, the environmental parameter is important in growing microalgae and potential to use 

as parameter to estimate the growth of microalgae. In This research, we proposed the growth 

estimation model of microalgae in Open Raceway Pond using the temperature and solar radiation 

parameter. The growth estimation model developed to estimate the production rate (g/m2/day) 

using the decision tree model using previous dataset from Minamisoma microalgae pilot plant. 

The result of this study indicated that decision tree algorithm able to estimate the microalgae 

production using the temperature and solar irradiance parameter with correlation coefficient 0.89 

and RMSE 0.085.  
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1.  Introduction  

Microalgae are one of the potential biomass to produce bioenergy and environmentally friendly 

compared to fossil fuel [1][2]. The microalgae potential to reduce the carbon dioxide (CO2) emission 

[3]. Compare to another plant; microalgae are higher productivity (per ha). The lipid productivity of 

microalgae is 4.5-7.5-ton ha−1 y−1 that estimated can produce 136,900 L ha-1 oil [4], higher than another 

crop such as Soybean (446 L ha-1) and Oil Palm (5,950 L ha-1) [5]. The microalgae can utilize the fresh 

water, seawater, and wastewater [6]. The cultivation of microalgae in sewage commonly using the native 

polyculture microalgae to improve stability and productivity of biomass [7]. The Algae Biomass and 

Energy System (ABES) R&D centre, the University of Tsukuba as a member of Algae Industry 

Incubation Consortium (AAIC) built the microalgae pilot plant in Minamisoma, Fukushima Prefecture 

Japan [8]. The primary target of the pilot plant is to produce the biofuel. In this pilot plant, the open 

raceway pond used to cultivate the microalgae. In this pilot plant, the native polyculture microalgae 
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grown in ORP. The advantages of the polyculture microalgae are the stability of biomass production 

caused by the diversity of the species in one culture [9] [10].  

The cultivation of microalgae in ORP is lower productivity than photobioreactor, but lower capital 

and operational cost [11]. The production optimization conducted by adding the sufficient nutrient, 

injected the additional CO2 and enough solar radiation to improve the microalgae produvtivity. 

However, the ORP is easy to contaminate with unwanted microalgae and another organism. Utilization 

the polyculture microalgae is one of the solution to minimizing the contaminant from unwanted 

microalgae. The polyculture make the microalgae culture more stable like natural ecosystem. However, 

the temperature and solar irradiance are fluctuated seasonally, also affected to the microalgae growth 

[12] [13]. In ORP, solar radiation and temperature is difficult to control.  

However, the temperature and solar radiation parameter are potential to estimate the microalgae 

growth. In This research, we proposed the growth estimation of microalgae in Open Raceway Pond 

using the temperature and solar radiation parameter. Previously, the kinetics models are commonly used 

in microalgae population dynamics but only focus on monoculture microalgae [14]. In this research, we 

proposed the decision tree model to estimate the polyculture microalgae in Open Raceway Pond (ORP). 

Machine learning method are algorithm that allow computer to develop model from previous dataset 

(training set). Our unique contribution solving the estimation model for complex combination of species 

in culture seasonally. The model developed using the machine learning model (decision tree), and 

environmental parameter (solar irradiance and temperature) to estimate the microalgae production in 

ORP.  

 

2.  Material and Method  

2.1.  Study Area  

In this research data collected from pilot plant microalgae cultivation in Minamisoma, Fukushima 

Prefecture, Japan (37.644673°N, 141.009490°E). The location of microalgae cultivation shown in 

Figure 1. The large area microalgae cultivation facility was builds to demonstrate the microalgae fuel 

production. The conversion method to crude using Hydrothermal Liquefaction (HTL) process.  

 

 
Figure 1. Microalgae Pilot Plant in Minamisoma, Fukushima Prefecture, Japan 
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2.2.  Data Collection  

The data collected from the pilot scale ORP facilitated with the paddlewheel for mixing the culture. The 

cultivation in 1 m2 area, 120 L volume, and 0.3 m depth of culture. The cultivation method using the 

semi-continuous culture with harvesting rate was 30 L day-1. The nutrient added in sufficient condition 

and additional CO2 injected to the culture. The microalgae species used in this culture was polyculture 

consist of Scenedesmus spp., Desmodesmus spp., Dictyosphaerium spp., and Klebsormidium sp [6]. The 

Figure 2 shown the schematic of the ORP used in this culture.  

 

 
Figure 2. The schematic of the Open Raceway Pond   

 

2.3.  Model Development  

For developing the estimation model using the tree model, data from the cultivation pond collected 

during January to December 2017. The water temperature (T) in 0C, solar irradiance (I) in µmol s-1 m-2 

and production rate of microalgae (P) in g m-2 day-1 were collected during culture. The temperature and 

solar irradiance chosen caused by dynamically change during culture. The temperature and solar 

irradiance collected using the sensor. The volumetric production (g m-2 day-1) calculated by the Dry Cell 

Weight (DCW) during culture. Table 1 shown the dataset used in this research. 

2.3.1.  Data Preparation  

In this step data that was collected were checked the consistency, calculated the production rate in area 

(g m-2 day-1). Finally, the data reformat into the input-output form. The input variable used in this 

research was Temperature (T) and Solar Irradiance (I) for the input and Production Rate (P) for the 

output variable. Table 1 shown the dataset used in in this research.  

 

Table 1. The dataset for the microalgae cultivation in Open Raceway Pond (ORP) 

 

No Day of year Average Outdoor 

Temperature (0C) 

Solar Irradiance 

(µmol s-1 m-2) 

Volumetric 

Productivity 

(g L-1 day-1) 
Begin  Harvest  

1 2 9 4.03 98 1.26 

2 9 16 2.08 93 1.03 

3 16 23 2.58 109 0.71 

4 23 30 2.91 128 0.77 

5 30 37 4.5 137 1.11 

… … … …. …. … 

89 359 363 3.98 85 2.83 
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2.3.2.  Model Development  

Machine learning algorithm is a process to use the dataset to fit a model through training or learning. 

The learning model will observe the relation between the input and output in several dataset to generate 

the model [15]. The decision tree is one of the machine learning algorithms that usually used by 

researchers in many application such as agriculture [16], hydrology [17], and energy [18]. In this 

research, Random Forest (RF) tree used to train the dataset to build the model. The Random Forest (RF) 

introduced by Breiman et al., (1984) [19][20] [21].  

The RF algorithm is consist of several activity such as [22]:  

1. Data preparation  

2. Creating the tree using the Algorithm 1.  

a. The createNode () is a function to create the tree.  

b. The find_best_split () is a function to determine the attribute should be selected as the test 

condition for split the training data.  

c. The classify () is a function to determine the class determined to a leaf node.  

d. The stopping_Cond () is functioning to terminate the growing tree.  

 

3. Evaluation  

Algorithm 1. Decision tree Induction  

ThreeGrowth (T,I; P) 

1:  if stopping_Cond (T,I;P) = true then  

3:      leaf = createNode (). 

3:      leaf.lable = Classify (T,I) 

4:      return leaf.  

5:  else  

6:      root = createNode () 

7:      root.test_cond = find_best_split (T,I; P).] 

8:      let V = {υ|υ is a possible outcome of root.test_cond} 

9:      for each υ V do  

10:         Ev = {e| root.test_cond (e) = υ and e € T,I } 

11:         child = TreeGrowth (T,Iυ; P). 

12:         add child as descendent of root and label the edge (root → child) as υ 

13:    end for  

14: end if  

15: return root.  

2.3.3.  Model Validation (Evaluation)  

In this step model evaluated using Root Mean Squared Error (RMSE) and coefficient correlation (R2). 

The prediction accuracy calculated for each training sample set using Equation 1.   

RMSE = √
1

𝑛
 ∑(𝑦𝑖 − 𝛾𝑖)2

𝑛

𝑖=1

 (1) 

where: MSE is Mean Square Error, n is number of sample, yi is the actual number, γi is predicted number.  

3.  Result and Discussion  

The Random forest algorithm in WEKA 3.9 software was used to develop the tree model. At first, data 

were reformatting and prepare in input variable (T and I) and output (P: g L-1 day-1). Second, the dataset 

was trained using Random Forest (RF) algorithm. The algorithm was built a tree model based on the 

training dataset. Third, the output of the training is a decision tree with 25 decision output. The size of 

the tree was 49 leaf’s with the depth of tree is 6. The tree result from this training shown in Table 2.  
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Table 2. The Tree Result Using Random Forest 
T< 16 

|   I< 61 : 0.5 (3/0) 

|   I>= 61 

|   |   T< 4 

|   |   |   I < 105 

|   |   |   |   T < 3 : P = 1 (1/0) 

|   |   |   |   T>= 3 : P = 3.2 (1/0) 

|   |   |   I >= 105 : P = 1 (3/0) 

|   |   T>= 4 

|   |   |   I < 257 

|   |   |   |   I < 108 

|   |   |   |   |   T< 5 : P = 2.3 (3/0) 

|   |   |   |   |   T>= 5 : P = 3.3 (9/0) 

|   |   |   |   I >= 108 

|   |   |   |   |   I < 145 : P =  1.9 (4/1) 

|   |   |   |   |   I >= 145 : P = 3.3 (11/0) 

|   |   |   I >= 257 

|   |   |   |   T< 14 : P = 3.7 (1/0) 

|   |   |   |   T>= 14 : P = 4.2 (3/0) 

T>= 16 

|   T< 25 

|   |   T< 23 

|   |   |   T< 22 

|   |   |   |   T< 21 

|   |   |   |   |   I < 209 : P = 4.6 (9/1) 

|   |   |   |   |   I >= 209 : P = 3.7 (12/0) 

|   |   |   |   T>= 21 

|   |   |   |   |   I < 169 : P = 2.6 (3/0) 

|   |   |   |   |   I >= 169 : P = 3.5 (2/0) 

|   |   |   T>= 22 

|   |   |   |   I < 146 : P = 4.7 (1/0) 

|   |   |   |   I >= 146 

|   |   |   |   |   I < 222 : P = 6.8 (3/-0) 

|   |   |   |   |   I >= 222 : P = 3.5 (2/0) 

|   |   T>= 23 

|   |   |   I < 96 : 4 (1/1) 

|   |   |   I >= 96 

|   |   |   |   I < 178 

|   |   |   |   |   I < 135 : P = 2.5 (1/0) 

|   |   |   |   |   I >= 135 : P = 3.1 (3/0) 

|   |   |   |   I >= 178 

|   |   |   |   |   I < 207 : P = 1.9 (1/0) 

|   |   |   |   |   I >= 207 : P = 2.4 (3/0) 

|   T>= 25 

|   |   I < 291 

|   |   |   I < 222 : P = 6.1 (4/0) 

|   |   |   I >= 222 : P = 5.3 (2/0) 

|   |   I >= 291 : 4 P = (3/0) 

 

The performance of model was evaluated using coefficient correlation (R2) and RMSE.  The result 

of the correlation coefficient (R2) and RMSE was 0.89 and 0.085, respectively. The training was 

performed in 89 iterations. Based on this result, the correlation coefficient is good enough for predicting 

the areal growth of microalgae in Open Raceway Pond. In this research, we assumed that another 
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condition such as pH and nutrient in good condition. In this research also assumed the polyculture 

condition is good condition and not count the composition of microalgae in culture. 

The advantages of using this tree models are: Easy to understand by expert, easy to evaluate the 

tree, expert can modify the tree, and easy to use if the previous data is available. The disadvantages of 

the tree algorithm are cannot build without sufficient dataset. The prediction of future condition based 

on the previous condition that represented as dataset for training and validation.  

4.  Conclusion and Future Work  

Based on the experiment, we concluded that the RF CART algorithm able to use for estimating the 

microalgae production (g L-1 day-1) using the temperature parameter. The correlation coefficient was 

0.89 and RMSE 0.085, that’s indicate that the model has the good performance. The result of the tree is 

easy to use by expert to evaluate and improve the model that build from dataset during training phase. 

The advantages of the machine learning method are easy to use if the time series dataset from previous 

experiment is available. In the future, addition more dataset with several condition is essential to 

improve the model capability. The modification of model or utilization another model may improve the 

accuracy of the model.  
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