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Abstract. A new simple universal form of the Kelvin equation, which can be used near the 
gas-liquid phase transition critical point, and the correction of the pressure and density for gas 
phase fluid outside the porous medium are  taken into account for the argon meniscus effective 
curvature radius calculation at the phase equilibrium in mesoporous silica MCM-41 on the 
basis of the capillary condensation experimental data. 

1.  Introduction 
Many methods for studying adsorption and condensation processes in porous media have been 
developed: traditional techniques (see the review paper [1]), CARS spectroscopy [2], NMR study [3], 
and positron annihilation spectroscopy [4]. We choose the works [5, 6] that have the relevant data for 
argon. 

The model used in this work has already been applied to the two substances: CO2 [7] and N2 [8, 9]. 
In this work it will be applied to argon, which as well as nitrogen is used as a test medium to 
characterize the porosity. MCM-41 is a glass with a highly ordered structure, the pores being almost 
the same size. The model consists of the 2 main parts: the new Kelvin equation and the state 
transformation of the gas phase from inside the pores to the bulk. Section 2 will briefly show the new 
universal Kelvin equation that is also applicable near the critical point. Section 3 will shows the 
transformation of the gas phase state from the center of the hemispherical meniscus to the bulk. 
Bringing the two parts of the model together allows [7, 8, 9] one to get the gas-phase pressure outside 
the porous medium as a function of the meniscus effective curvature radius at the phase equilibrium 
inside the pores. Vice versa, one can find the radius as a function of the pressure in bulk. The latter is 
available in [5, 6] for several pore radii and temperatures. The results will be presented in section 4. 

2.  Simple universal Kelvin equation 
In the work [7] a simple universal form of the Kelvin equation was deduced. The equation has two 
integral forms: 
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Here L
satpɶ  is the pressure of the liquid phase in equilibrium with the saturated vapor at pressure satpɶ  

(one separated from another by the curved meniscus), satp  is the saturated pressure in bulk, Gρ , Lρ  
and pG, pL are the phases’ densities and pressures, respectively, σ is the surface tension, r is the 
effective curvature radius. 

In order to take into account surface tension dependency on Lρ  and Gρ , the parachor equation for 
pure fluids may be used [10]: 

     { }4
( ) ( ( ) ( ))L GT T Tσ ρ ρ= ℘ − ,   (3) 

where ℘  is the parachor of the fluid. In this equation, σ may be treated curvature independent, if 
the curvature radius is significantly greater than the Tolman’s length [11]. More over, the authors of 
[12] stress that the equation (3) automatically accounts for the curvature, the latter manifesting itself 
through the change in density difference between the phases. 

3.  Internal chemical potential correction 
The gas in the porous medium is attracted by the adsorbate and condensate molecules and also by the 
atoms of the porous medium. In this paper, the interaction with the porous medium is not taken into 
account. It can be reasonable if the adsorbate layer is thick enough. The good side of doing so is that 
the model can be used even when the pore radius is not known. The chemical potential of the gas 
phase in the presence of the force field can be split in two parts, the field one and the state one. The 
total chemical potential should remain the same inside and outside the porous medium. Thus one can 
put the equation [7-9]: 

     ( , ) ( , ),f fT Tµ µ ρ µ µ ρ′ ′ ′+ = +    (4) 

where 0fµ′ =  and ( , )Tµ ρ′ ′  are the field and the state chemical potentials far outside the pores, 

fµ  and ( , )Tµ ρ  are the ones inside the pores near the curved meniscus. Now we can put [7,8]: 

     ( , ) ( , ) .fT Tµ ρ µ ρ µ′ ′− = −     (5) 

This equation shows the difference between the states inside and outside the porous medium. 
–µf being positive reaches its approximate minimum in the center of the meniscus hemisphere. In 

this paper, will be considered minimal (not exact) µf. Thus the minimal necessary correction will be 
performed. 

To proceed further, it is assumed that the liquid-like layer surrounding (at the moment of the 
condensation) the center of the meniscus hemisphere is composed [7] of the spherically organized 
fluid at one side and the cylindrically organized fluid at another side: 
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where , ,,f sph f cylµ µ  — the field chemical potentials due to interaction with the spherical and the 

cylindrical liquid surroundings, respectively, (NA is the Avogadro number, nL, nV are liquid and vapor 
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phases molar concentrations, respectively; εLL and σLL are the fluid-fluid Lennard-Jones interaction 
parameters), / 2LLr σ+  is used instead of r, to account for the liquid molecule center shift from the 

phase separation surface. One may notice that in the integrals for , ,,f sph f cylµ µ , upper limits are set to 

∞. This can be justified if the adsorbate is sufficiently thick. This equation corrects [8, 9] the 
analogous one of [7] by means of replacing nL with L Vn n− . 

Now, in terms of the saturated pressure, equation (5) can be rewritten [7]: 
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where satp′ɶ  is the pressure of vapor outside the porous medium in equilibrium with confined saturated 
vapor. 

Both fµ  and satpɶ  are functionally dependent on r. Thus satp′ɶ  is a function of r. Vice versa, r can be 

treated as a function of satp′ɶ . Consequently, if one knows the experimentally determined pressure satp′ɶ  
[5, 6], one can estimate [7-9] the meniscus effective curvature radius as well. 

In the next section, we apply the model to capillary evaporation/condensation of argon in MCM-41. 

4.  Calculating phase equilibrium as a function of the meniscus curvature 
Argon is a nonpolar fluid. Thus its Tolman’s length should be smaller than the molecule average 
diameter in the cases considered in this work. 

The value 54.00 1/ 4 11/ 4dn cm / mol of [12] is used for the Ar parachor. For the Lennard-Jones 
potential, the authors will use the parameters [13] εLL = 1.67·10-21 J, σLL = 0.340 nm. 

PC-SAFT EOS used in the work [12] behaves correctly in the instability region and therefore is 
suitable for handling the ‘light phase’. In the present work, the treatment is limited to stability and 
metastability regions. Thus the choice of the EOS can be extended to high-accuracy empirical ones. 
The equation of state and the phase equilibrium equations of [14] will be chosen further on in this 
paper. For comparison the equation of state of [15] will be also used. 

 
a     b 

Figure 1. Calculated phase equilibriums of Ar as a function of the spherical meniscus curvature 
radius for T = 87 K. 
Using the integral equations (1), (2), the equations of state and the parachor equation (3), the phase 

equilibriums have been calculated. Pressure outside the pores is calculated using equation (9). In 
figure 1 - the calculated phase equilibriums of argon as a function of the spherical meniscus curvature 
radius for T = 87 K. In figure 1a the solid lines show some of the equilibriums. Horizontal line shows 
the phase equilibrium of the bulk argon. The dash and dot curves show the isotherms of [14] and [15], 
respectively, the former is used for calculations for its better accuracy. One may notice their similarity 
in stability and metastability regions. This fact supports the equations of state validity in the both 
regions. In figure 1b the dot and the solid curves show the inverse curvature radius as a function of 
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/sat satp pɶ  and /sat satp p′ɶ , respectively. Now that we know the measured capillary condensation pressure 
[6], we are able to estimate the spherical meniscus effective curvature radius. To do so, the closed 
square and open round symbols may be put on the /sat satp p′ɶ  curve accordingly with the experimental 
results [6] for the evaporation and condensation, respectively. As it has not been established [12,16-
24] yet which (if either) of these processes takes place in the state of the thermodynamic equilibrium, 
the method suggested in this work is applied formally to the both of them, giving the possible inverse 
meniscus radii at the moment of the capillary evaporation and condensation. For the cases, in which 
the hysteresis is not observed, the open round symbols are used. The results are summarized in figure 
2. There are shown the effective meniscus curvature radii at the capillary evaporation (closed symbols) 
and the condensation (open symbols) as a function of the sample pore radius. As soon as we know the 
latter, we are able to calculate the λ-parameter [12] as well (see figure 3). Figure 3 also shows partially 
the fit by a curve made in [12]. It should be mentioned that the results presented here are made with 
high-accuracy numerical methods. Figure 1 and the actions associated with it are used for the 
illustration purposes. The results of another work [5], dealing with the same sample at different 
temperatures, have passed the similar procedure. In figure 4 there are the effective meniscus curvature 
radii at the capillary evaporation (closed symbols) and the condensation (open symbols) as a function 
of the temperature. The λ-parameter is shown in figure 5 by rhombi. Analogous results for argon of 
[12] are shown by closed squares. In figure 5 rounds and open squares show the results for N2 of [8] 
(recalculated [9] with a high-accuracy numerical scheme) and [12], respectively. Closed rounds show 
the results from the desorption branch. Triangles and stars show the results of the work [7] and the 
work [12], respectively. Open triangles show the results published in [7], where the capillary 
condensation pressures were taken indirectly from figure 3 of [5]. Closed triangles show the 
‘improved’ results, where the capillary condensation pressure data were taken from figure 4 of [5], and 
also the corrected [8] equations (7), (8) were used. 

 
 

Figure 2. Effective meniscus curvature radii at 
the capillary evaporation (closed symbols) and 
condensation (open symbols) as a function of 
the sample pore radius at T = 87 K. 

Figure 3. λ-parameter as a function of the pore 
radius at T = 87 K. 

5.  Conclusion 
On the basis of the available capillary condensation data [5, 6], the spherical meniscus effective 
curvature radius at the moment of argon capillary condensation/evaporation in MCM-41 and the λ-
parameter have been calculated for several pore radii and temperatures. On the basis of the results 
presented in this work and in the works [7, 8, 9] (in contrast to those of [12]), it can be concluded that 
the λ-parameter shows similar value in a wide range of the pore radii and temperatures, especially for 
the evaporation. The method used in this work is analogous to that used in [12] with the two most 
important exceptions. Firstly, instead of the ‘light phase’ the liquid phase is used. Secondly, the fact 
that the vapor state inside the pores differs from that in bulk is taken into account. 
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Figure 4. Spherical meniscus effective 
curvature radius at the moment of argon 
capillary condensation in MCM-41 as a 
function of the temperature. 

Figure 5. λ-parameter as a function of the 
temperature. 
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