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Abstract. Any gas condensate field has an extensive gas collection system (GCS), through 
which gas is delivered from the wells to a Gas Processing Plant by means of reservoir energy. 
At the final stage of field development the GCS operating conditions undergo significant 
changes, in particular due to lower temperature of transported gas and increased water cut in 
the production fluid. In winter, simultaneous action of these factors may lead to formation of 
ice and hydrate plugs disrupting normal operation of the GCS. Gas stream velocity shall ex-
ceed so-called critical velocity to ensure that the flowlines operate in the liquid removal mode. 
Its value is determined by a pipeline diameter, ratio of gas and liquid density, thermobaric con-
ditions, flowline slope and other factors. Ensuring necessary velocity at the final stage of oper-
ation is usually impossible, thus, complete moisture removal is problematic and the hazard of 
ice formation persists. This paper proposes an innovative technology providing stable GCS op-
eration by preventing ice formation in the flowline. For that end, the gas-liquid mixture in the 
GCS gets additional heat from heat tracing located inside the GCS. The heat tracing is coiled 
tubing with constant circulation of liquid heat-transfer medium: methanol-water solution, heat-
ed by rejected heat when passing through the air cooler unit (ACU). The coiled tubing forms a 
closed loop with the methanol pipeline. Changes in heat exchange medium consumption are in-
troduced with a VSD-driven pump, basing on the results of temperature measurement in the 
flowline. Application of the proposed technique allows not only providing emergency-free 
GCS operation, but recuperation of rejected heat from the ACU as well. 

1.  Introduction 
When oil and gas condensate fields (OGCF) reach the final stage of their development, operation of 
GCS becomes significantly more complex. It is so due to several factors, such as reduction of reservoir 
pressure, lower well production and higher water cut. The issues are especially vexed during the cold 
part of year, when the ambient temperature is significantly lower than 0 ºС and the soil is freezing to 
negative temperatures. At the final stage, gas stream velocity values at the majority of GCS segments 
(not taking into consideration the joint sections) are usually at the level insufficient for liquid removal. 
Lowering of wellhead temperatures and reduced gas flow from the wells lead to the situation when the 
amount of heat coming from the reservoir with the gas is insufficient to keep water in the flowline 
from freezing on contact with the pipeline walls [1].  

It shall be noted, that at the initial stage of OGCF development, influence of sub-zero temperatures 
is insignificant due to self-regulation of flowline operation.  On the one hand, glaze ice on the pipe 
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walls acts as additional thermal insulation, thus reducing heat losses. Besides, it leads to reduced sec-
tion and increased gas stream velocity.  On the other hand, the flowline resistance increases, as well as 
its pressure drop along the length, which especially affects increased winter flowrates. When well pro-
duction is sufficient, such self-regulation creates an equilibrium state that provides normal operation of 
wells and the flowline alike. It is possible if the wells operate in a wide range of flowrates and well-
head pressures (without self-kill), providing liquid removal. However, during the final stage of devel-
opment, when well production is reduced, the wells themselves start operating with liquid accumula-
tion and even insignificant increase in wellhead pressure leads to self-kill. Thus, unlike earlier stages 
of development when equilibrium may be found providing enough clear opening for gas stream, at the 
final stage of development the gas flow rate and reservoir heat coming with it are insufficient to pre-
vent total freezing of the pipelines.  

The main hazard  from combination of such factors as accumulation of liquid in flowlines and re-
duction of gas stream temperature lies in formation of ice and hydrate plugs, which not only impair the 
efficiency of gas field operation, but in some cases may lead to emergency [2]. Thus, analysis of exist-
ing operational conditions of GCS at Urengoy OGCF and its trends and  further development of inno-
vative technologies allowing efficiently operating GCS under the changed conditions is a pressing sci-
entific and practical problem.   

2.  Analysis of progress to date 
As a part of field development audit for additional development of Cenomanian deposit of Bolshoy 
Urengoy deposits regularly performed by Gazprom VNIIGAZ LLC, an efficiency analysis was per-
formed on the current gas collection system operation and forecasts were made for its further opera-
tion basing on the GCS model. This model was developed from design premises and current meas-
urements of field parameters obtained from the telemetry system on the basis of RPT-04 process re-
corders [3], which are currently installed on almost every well. GCS thermal conditions, amount of 
removed water and changes in well production were the objects of analysis. 

Analysis of GCS thermal conditions has shown that at all fields there is a stable reduction in tem-
perature of transported product [4, 5]. So, if in January 2004 the temperature at the inlet of Gas Pro-
cessing Plant (GPP), that is, at the end of GCS, was on average 5.8 ºС, in some days of January 2013 
this value was as low as minus 2 ºС while the ambient conditions were comparable (average ambient 
temperature of 0.9 ºС). Changes in temperature from 2014 to today and forecasts up to 2030 are shown 
in Fig. 1. 

The obtained results bear record to increased risk of hydrate and ice formation in GCS pipelines as 
further reduction in production and wellhead temperature during the operation of the field will lead to 
further lowering of temperatures in the flowlines. 

Water cut in GSC flowlines is assessed from the amount of water reaching the GPP separators. As 
the research shows, during the year daily and monthly volumes of liquid reaching the GPP vary signif-
icantly, as water ingress in non-uniform (Fig. 2). It is due to seasonal variability of gas extraction, wa-
ter accumulation in GCS and its further massive removal when gas extraction increases or some other 
changes in GPP operation are introduced. 
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Figure 1. Dynamics of temperature and well production for wells connected to GPP-5 
 

Figure 2. Diagram of GPP-5 water inflow 
 

Water inflow from the gas collection system is of unstable nature, mainly due to some GCS sec-
tions operating in plugged mode. Inflow of liquid plugs depends on well and pipeline operating 
modes, cooling intensity, presence of low pockets where liquid is accumulated (such as ravine or river 
crossings). When a volume of accumulated liquid exceeds the critical value, it is removed by gas and 
transported to another section. This process repeats until the liquid reaches GPP in the form of a liquid 
plug. 
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Gas-liquid stream flow state in a three-dimensional pipeline is a function of many variables: pres-
sure, slope, stream velocity, etc. Calculations usually use so-called critical velocity as a criterion; it is 
a velocity when for given thermobaric conditions and pipeline geometry there is a transition from liq-
uid removal mode to liquid accumulation mode. In downslope pipeline segments a layered mode is 
actualized: liquid flows along the bottom of the pipeline, gas moves above it, at that, liquid velocity is 
quite close to that of the gas. In upslope pipeline segments, accumulation of liquid occurs, and when 
the liquid occludes the pipeline section, a plug flow is actualized (with generation of low frequency 
liquid flowrate pulses). At that, the liquid accumulation mode arising in the upslope segment leads to a 
significant reduction in effective flow velocity of the liquid phase with respect to that of the gas. 

Under current operating condition of Cenomanian wells production collection, one of the most im-
portant limiting factors to efficient operation of gas collection headers and flowlines is critical liquid 
removal velocity, below which liquid accumulation mode kicks in in the flowline and possibility of 
plug flow arises. 

In general case, the critical gas stream velocity  vcr  is to various degrees influenced by the follow-
ing parameter: internal diameter of the pipeline Н0, density of the accumulated liquid ρlq, viscosity of 
the accumulated liquid  νlq, gas density ρg,  sine of slope angle of the upsloping pipeline section to 
horizon α  and free-fall acceleration  g (Fig. 3). Thus, the critical velocity is a certain function depend-
ing on the parameters noted above:   
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Figure 3. Liquid accumulation at an upslope section of a gas pipeline 
 

There are various calculation methods for minimum gas velocity necessary to ensure liquid remov-
al from a pipeline [6-10]. The critical velocity may be calculated with the formula:  

��� = �2 ����������� ∙ �� ∙ �(
� − 
��� m/s,                            (1) 

where  ρ ′  is density of the liquid, kg/m3; 
ρ ′′  is density of the gas, kg/m3; 
σ  is surface tension of the liquid, n/m; 
g is free-fall acceleration, m/s2. 
This equation does not take into account the pipeline slope, which is a drawback. At the same time, 

in [9] there is a condition obtained that determines accumulated liquid removal from a low-lying sec-
tion of a pipeline: 
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where /0(1) = 2а�456(7а,78,9:;<=)
2> .  

?@� is reduced Froude number; 
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AB is the hydraulic resistance coefficient when there is accumulated liquid in upslope segment; 
C = 4DE

4F> is a dimensionless parameter equal to ratio of the liquid bulk density to that of the gas;  

G = 2>
4DE∙H is a dimensionless parameter which is directly proportional to a pressure at the initial sec-

tion of the pipeline and inversely proportional to the bulk density of the liquid and radius of the pipe-
line.  

Otherwise, the liquid is not removed completely, forming a fixed layer underneath the flowing 
stream of gas. 

That is why, to evaluate minimum allowable productivity of a pipeline that prevents liquid phase 
accumulation in low-lying segments of the GCS, it is practical to employ a formula that takes into ac-
count the slope angle of the upslope pipeline segment, e.g., [10]: 

��IJ = 0.1(����),�.NN
,�.NO�2�P �DE,�F�F ����                     (3) 

where vrmv is the speed of removal of accumulated liquid phase from low-lying segments of the 
route, m/s; 
α is the slope angle of the upslope segment; 

 = JF

JDEis the ratio of kinematic viscosities of gas (under operating conditions) and 
B the liquid 

phase 
QR; 
g = 9.81 m/s; 
d is the internal diameter of gas pipeline, m; 
ρlq is the density of the liquid phase having accumulated in the low-lying segment of the gas pipe-

line, kg/m3; 
ρG is the density of the gas stream under operating conditions at the entrance to the upslope seg-

ment of the gas pipeline, kg/m3. 
This model accounts for thermobaric conditions in an indirect way: depending on their values and 

molecular weight of the gas, the value of gas kinematic viscosity is determined for the operating con-
ditions  νG. 

To assess the minimum value of velocity vrmv, necessary to remove water, calculations were con-
ducted for several low-lying sections of a GCS from a cluster of Cenomanian wells  Dу 500. Values of 
initial data:  νG = 0.716 cSt; νlq = 1.465 cSt; ν = 0.4887; d = 0.5 m; ρG =15.09 kg/m3; ρlq = 998.3 kg/m3. 
Thermobaric conditions: Р = 20.5 kgf/cm2, Т = 8.5 °С.  The calculations were performed for a range of 
slope angle α of the upslope segment from 4 to 16°, which corresponds to the real-life geometry of the 
GCS flowlines. The calculation results are listed in Table 1. 

 

Table 1. The calculation results of speed of removal of the liquid phase. 
Slope angle with respect to the horizontal axis 
α,° 

4 6 8 10 12 14 16 

Speed of removal of the liquid phase from low-
lying segments vrmv, m/s 

2.08 2.23 2.34 2.43 2.5 2.57 2.62 

 
The results obtained show, that, for instance, at the GCS segment 1221 (slope angle α=12°) to 

maintain necessary mixture velocity vrmv = 2.5 m/s a flow Q = 830 thousand m3/day is necessary, while 
the actual total of production in this area does not exceed 120 thousand m3/day. 

In [11], a model is proposed where the minimum necessary gas stream velocity providing liquid 
removal from the pipeline at 90÷95% is determined with accounts for flowline pressure:  

�I;< = 3.3 ∙ T228U
�,VW ∙ X Y∙�

�56,�Z[
�,\W ∙ X�5Z�Z [

�,W ∙ (sin�)�,\W   (4) 

where Р is a pressure in the system, MPa; 
Р0 is atmospheric pressure, MPa; 
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(ρlq - ρg) is a difference of density of the liquid and that of the gas at operating conditions, kg/m3; 
σ is a surface tension; 
g is free-fall acceleration, m/s2. 
α is the slope angle of the pipeline with respect to the horizontal axis. 
The velocity necessary for a complete (90÷95%) removal from flowlines at current pressure calcu-

lated from the formula (3) is equal to 7 m/s. However, when the pressure falls, e.g., down to 10 
kgf/cm2, this value increases to 9 m/s, which is almost impossible to provide under falling production 
conditions. 

3.  Results and Discussion 
Currently, about 65% of the GCS operates under liquid accumulation mode, which amounts to 1100 
km in absolute value (out of the total length of 1690 km). Further operation will be accompanied by 
deterioration in removal conditions and by 2030 the length of such segments will reach 87% of the 
total pipeline length. Taking into account, that forecast temperature at the valve station inlet will be 
negative by 2030 (see Fig. 1), and reducing well production will not be able to provide critical velocity 
of the gas stream, the probability of ice and hydrate plugs increases sharply. Most proposals aimed at 
solving the liquid accumulation issues in GCS assume reducing the pipeline profile to values at which 
gas stream velocity will be sufficient to ensure water removal. This, however, leads to increased re-
sistance of the flowlines. 

On the other hand, the presence of water in the flowline itself is not a critical factor for GCS opera-
tion if its volume is at an acceptable level, as it does not create any significant resistance to gas flow. 
That is why, if complete water removal from the GCS pipelines is impossible, it is practical to develop 
an innovative technology preventing its freezing. A possible solution is supply of heating by trace 
heater, so that the liquid is constantly maintained unfrozen while GCS hydraulic resistance changes 
insignificantly. 

It is practical to use rejected heat as a source for GCS heating, as significant resources are spent to 
dissipate it, in particular, the heat from air cooler units of booster pump station (BPS ACU). The heat 
tracing is coiled tubing laid inside the existing flowlines. At the cluster side end of the flowline they 
are connected to existing methanol line, forming a closed loop. Heat exchange medium circulates in 
this loop, preventing the liquid from freezing and providing its removal during pipeline purge by a 
compressor.  

A proposed flowline heating system operating on recuperation of gas ACU rejected heat is shown 
in Fig. 4. 
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Figure 4. Flowline heating system operating on recuperation of gas ACU rejected heat. 
 

Heat from the gas that underwent compressing at the BPC is transfered to an intermediate heat ex-
change medium, a methanol-water solution (MWS) with a concentration that prevents its freezing 
from the lowest ambient temperatures during the cold period of year. MWS is transported inside the 
GCS through a flexible metal tube by means of VFD-driven pumps. A coiled tubing with OD of 40 – 
60 mm laid pipe-in-pipe is used as a pipe. ACS for this technology is based on industrial-grade con-
trollers that control the pump operation maintaining necessary levels of pressure and temperature in all 
controlled points on the basis of data coming from RTP process recorders, thus providing equilibrium 
mode of GCS operation.  

The main task in determining necessary amount of heat to provide gas transportation with water to 
the valve station without formation of ice plugs is calculation of heat losses in the GCS gas pipelines. 
Non-uniform nature of thermal insulation and pipe laying technology create most difficulties for such 
calculations. Each GCS gas pipeline may be partially laid underground at various depths, on the 
ground surface or as an elevated pipeline on piperacks. At that, thermal insulation may be partially 
disturbed or completely missing. In case of surface pipelines, it is quite common that extensive length 
of the pipeline are completely or partially submerged in water. Significant variation of seasonal tem-
perature and solar irradiation, changes in wind speed and snow cover depth, significant variation in 
heat transfer ratio along the gas pipeline route do not allow performing the calculations with accepta-
ble accuracy.  

Estimation of the MWS amount necessary for gas heating was performed with a mathematical 
model from data obtained at GPP-5 of the Urengoy OGCF. 

Optimal (for absorption gas dehydration) value of gas temperature at the heat exchanger outlet is 
+15 0С. To ensure this value for MWS temperature inlet of  +1 0С at the heat exchanger inlet and gas 
temperature of +90 0

С  during peak removals, it is necessary to supply 100 t/h of MWS. At that, the 
outlet temperature of MWS is 80 0

С. WMS concentration that prevents its freezing when being cooled 
to the coldest ambient temperature is 60 wt%.  (freezing temperature of minus 75.7°С) [12].  

To assess heat losses along the methanol pipeline system and determine MWS temperature at the 
well cluster, a hydrodynamic model of the methanol pipelines has been developed. The calculations 
were performed for underground pipe laying for three various types of sandy soil: dry, moist and wet, 
as the heat exchange rate varies over a wide range depending on water content: from 0.5 to 2.2 
W/(m·K) [13]. Initial WMS temperature for all cases was taken as 70 ºС, the soil temperature was tak-
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en as minus 5 ºС. The calculations have shown, that with MWS flowrate of 60 m3/h, its temperature 
after passing the flowline was 26, 13 and 2 ºС, for dry, moist and wet sand respectively. 

As methanol pipelines may be laid on the surface or underground, passing through both swampy 
and dry land, the results obtained, though approximate, allow concluding that the surface of the meth-
anol pipelines is sufficient for dissipation of the MWS heat. 

4.  Conclusions 
The proposed technology has a great practical importance for gas and gas condensate fields at the final 
stage of operation. Besides attaining its main goal – prevention of ice and hydrate formation – when 
using GCS as a heat dissipating loop, a possibility opens to dissipate vast amount of heat (up to 15-20 
MW from two stages of ACU), which today consumes up to 1.5 MW*h of electric power.  

References 
[1] Krasnov A N, Prakhov M Y, Suleymanov I N, Khoroshavina E A, Lya V E 2017 Continuous 

Monitoring of Gas Wells Water Cut. Natural and Technical Sciences 10 (112) 40-46 
[2] Istomin V A, Kwong V G 2004 Prevention and Removal of Gas Hydrates in Gas Production 

Systems. (Moscow: IRTs Gazprom) 
[3] Process recorder RTP-4. Measuring equipment description. Retrieved from: http://www.all-

pribors.ru/opisanie/29581-12-rtp-04-28908 
[4] Istomin V A, Kwong V G, Troynikova A A, Nefedov P A 2016 Peculiarities in Prevention of 

Ice and Hydrate formation in Gas Collection Systems During the Late Stage of Operation at 
Cenomanian Deposits in West Siberian Fields. Transportation and Storage of Petroleum 
Products and Hydrocarbon Materials 2 25-30 

[5] Rotov A A, Istomin V A, Mitnitsky R A, Kolinxtyrj I V 2016 Peculiarities of Thermal Modes of 
Gas Collection System At Late Stage of Development of Cenomanian deposits of the Urengoy 
Field. Transportation and Storage of Petroleum Products and Hydrocarbon Materials 3 46-52 

[6] Potapenko E S 2012 Possibility of Accumulated Liquid Removal from Low-Lying Segments of 
Pipelines By Purging. Oil and Gas Technologies 4 (81) 61-64 

[7] Potapenko E S 2012 Experimental Research in Influence of Gas Streqm Velocity on Liquid 
Accumulation in Low-Lying Segment of a Pipeline. Gas Industry 9 (679) 44-47 

[8] Potapenko E S, Koklin I M, Malenkina I F 2013 Theoretical Justification for Possibility to 
Apply Gas Flow Energy to Remove Accumulated Liquid from a Gas Pipeline. Gas Industry 4 
(689) 47-48 

[9] Galliamov A K, Gubin V E 1970 Influence of Water and Gas Accumulation onto Operational 
Characteristics of Major Pipelines.  (Moscow: VNEEONG) 

[10] Minlikayev V Z, Dikamov D V, Koryakin A Y, Guzov V F, Donchenko M A, Shulyatikov V I 
2014 A New Stage in Improving Well Operation Technology for Cenomanian Deposits / V.Z. 
Minlikayev. Gas Industry 3 85-88 

[11] Odishariya G E, Tochigin A A 1998 Applied Hydrodynamics of Gas-Liquid Mixtures. Moscow: 
All-Russia R&D Institute of Natural Gas and Gas Technologies (Ivanovo, Ivanovo State Energy 
University) 

[12] Properties of Methanol and Its Water Solutions. Retrieved from: 
http://mirznanii.com/a/10128/svoystva-metanola-i-ego-vodnykh-rastvorov 

[13] Main Properties of Soil Types. Retrieved from: 
http://www.baurum.ru/_library/?cat=earthworks_general&id=5006  


