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Abstract. In this paper the new method of forming based on flanging is investigated. The 

obtained experimental results supported the theoretical conclusions and allowed us to define 

geometric dimensions of a blank for forming of the thin axisymmetric parts with minimal 

thickness fluctuations. This analysis serves as a foundation for further design of the 

technological process. 

1.  Introduction 

Development of new designs in the sphere of aircraft engines [1, 2] is limited by the possibilities of 

the know sheet metal stamping methods to obtain needed parts, including methods of obtaining thin-

walled axisymmetric shells, which are widespread and have a variety of shapes and sizes. 

Investigation of the mechanism of the forming process for parts [3-8] with minimal thickness 

fluctuations [9] by solving the theoretical equations and the posibility of the application of the 

improved methods could significately lower the labor intensity of the manufacturing.  

2.  Methods and theoretical foundations 

Let us analyse one of the methods for manufacturing thin-walled convex parts. The experimental die is 

presented as a simplified design, in which moving sectors are presented as 4 segments of a conical 

shell split along the generatrix. During the forming, the moving sectors form a gap, which is constant 

along the length and is similar between the two neighboring sectors. Such conditions are fulfilled due 

to the action of the friction forces on the contact surface between the elastic elements and the moving 

sectors. The friction forces also restrain the movement of the sectors along the plane perpendicular to 

the axis of the stamp. 

The distinctive feature of this stamp is the presence of the conical hollow elastic element, inner 

surface of which corresponds to the outer surface of the assembled segments. In this case the process 

could be split into two stages. In the first stage the conic angle of the workpiece and the conic angle of 

the elastic element must comply with the following condition: 

 elblank ftg  , (1) 

where  elf  - maximal friction coefficient between the blank and the elastic element; 

 blank - conical angle of the blank. 

On the second stage, when the workpiece is pressed to the die (figure 1 right side), it becomes 
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clamped due to the action of the friction forces from the elastic element and due to the friction forces 

from the die as well, and cannot move towards the smaller edge, even in the cases of large conic 

angles of the generatrix of the die, which not comply with the expression (1), but satisfy the following 

condition: 

 1fftg elpart  , (2) 

where 1f - the friction coefficient between the workpiece and the die. 

In the view of the foregoing, the generatrix equation for the conical surface of the workpiece could be 

written as follows: 

 bablank 
, 

where  - the coordinate on the work surface of the die. 

This method of flanging allows calibration by 5-7% of the blank, obtained by bending of the flat sector 

welded along the generatrix. 

 

1 – upper plate;  2 –die;  3 –blank;  4 –elastic element; 5 –e moving 

sectors;  6 –conical punch;  7 –lower plate;  - minimal gap 

between the diameters of the blank and the die 

Figure 1. The scheme of the flanging of the thin-walled conical 

part. 

 

The coefficients а  and b could be found from the following conditions: 
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at blankblankpart RR   ; ;  

at blankblankpart rr   ;
.
 

Let us write the line equation: 

   



 part

partpart

blankblank
blankblank R

rR

rR
R ,

 
(3)

 

where the numerator equals: 

 blankblankblankblank rR  sin ,
 

(4)
 

where blank  - the length of the generatrix along the median surface of the blank; 

 blankR  - the radius of the larger edge of the blank; 

 blankr  - the radius of the smaller edge of the blank; 

 partR  - the radius of the larger edge of the part; 

 partr  - the radius of the smaller edge of the part. 

The length of the generatrix could be found from the consistency of the volume condition [10]: 

 0 S  ,
 

(5)
 

where S  ,, - the deformations in the meridional and  tangential directions and in the direction of 

the thickness of the part. 

Taking into account the following geometrical ratios R , part = constblank  , the forces 

balance equation [10], in the absence of the friction forces on the outer surface, takes the following 

form:  

 
  01  blankel ctgf

d

d





 


,
 

(6)
 

where blank - the angle between the generatrix of the blank and the axis of the symmetry. 

We use the transversely isotropic body plastisity condition: 

 *
SS   , (7) 

where S - the yield stress; 

  - the coefficient equals to   12  [10]; 

  - the coefficient of the anisotropy of a transversely isotropic body. 

The solutions (6) and (7), without the considiration of a hardening and alteration of thickness, takes 

the following form: 

   011 














part
blankelS

R
ctgf


  , (8) 

where  
partr


  ; 

part

part
part

r

R
R  . 
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Now we compose the forces balance equation of a infinite-small element on the smaller edge side and 

by making similar transformation as we did for the other side of the blank (the larger diameter edge), 

we get: 

   0
1

11 












  blankelS ctgf , (9) 

If we equate (8) and (9), we get: 

     































1
1111 blankel

part
blankel ctgf

R
ctgf . (10) 

Out of (10) we find the current radius, considering it as an average value: 

 partaver R . (11) 

By the equation (11) we can find the radius of the elements in which the stresses   are equal on the 

side of the larger and the smaller edges. By substituting aver  in the equations (8, 9), the ratios could 

be found for 5.1partR ;  20part ; 15.0elf : 187.0
S

u




. 

We take the assumption that the ratio of the stresses   /  in the whole area of the deformation is 

close to zero, since the stresses on the edges of the blank are equal to zero and the increase of the 

steresses in the middle portion is insignificant. In such conditions, the blank can deform along the 

conical punch, reducing its length along the generatrix. Let us find the ratio of elf  and blank  at which 

the blank would not slide out of the punch (see figure 2). 

 

Figure 2. The scheme for identifying the condition which allows 

the deformation of the blank. 

 
elNfr fPF  ; (12) 

 blankblankNV PP  cossin  , (13) 

where NP - the normal component of the force from the pressure. 

From solving the equations (12) and (13) we get: 

 blankelf 2sin5.0 . (14) 



IPDME2018

IOP Conf. Series: Earth and Environmental Science 194 (2018) 062009

IOP Publishing

doi:10.1088/1755-1315/194/6/062009

5

 

 

 

 

 

 

Taking into account the accepted assumption, the linking equation takes the simplier form:  

     1S . (15) 

For the deformation calculations we accept that: 

 blankpartblank   )(  ; blankblankpartS SSS )(  ; 





blank1 , (16) 

 
 













1
11 part

part

blank

S

, (17) 

where part  - the length of the generatrix on the middle surface of the part; 

 blankS  - the thickness of the blank; 

 partS  - the thickness of the part. 

The values of the lengths of the generatixes of the part could be found as:  

 blankпpart RR    )( 0  (see figure 3). (18) 

If we write the equation (3) in the dimentionless form, then taking into accout (4), we get: 

  
 


 part

part

blankblank
blankblank R

R
R

1

sin
, (19) 

part

blank
blank

part

part

part

part

blank
blank

part

blank
blank

rr

R
R

r

R
R

r





  ;;; ; partR 1 . 

If we put blank  in the expression (15) and taking into account the technologically possible thickness 

we replace partS = TS  in the equation (16), we get:  

  
   











 







1sin
111

partpartblankblankblank
Т

RRR
S , (20) 

where 
blank

T
T

S

S
S  . 

The value of the independent relative radius   for the convex part (see figure 3) is: 

 aR    cos , (21) 

where 
partr

a
a  - the distance between the center of the radius R  and the axis of symmetry. 

The equation of the generatrix of the conical surface of the blank is (see figure 3): 

 )( 0

0




 





п

blankblank
blankblank

rR
R , (22) 

 )(
0




 



 п

п

blankblank
blankblank

rR
R . (23) 
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п - angle formed by the radius R  drawn between the large edge 

of the blank and the smaller edge of the part; 0 - angle formed by 

the radius R  drawn between the large edge of the blank and the 

larger edge of the part; blankH - height of the blank; MR - Radius of 

the larger edge of the die;  - gap between the smaller edge of the 

blank and the working surface of the die 

Figure 3. The scheme of the geometrical dimensions of the blank 

and the die with the convex working surface. 

 

In the light of the found relations (22) and (23), we can find the values of the relative thickness: 

 



























aR

rR

S п

blankblank

T







 cos

)(

1)1(1 0

0

. (24) 

Now we can write the condition of the minimal tickness fluctuations relative to the constant set 

tickness, accepting that blankblankblankblank rR  sin : 

 min
cos

sin

1)1(1

2

0

0

0




















































п

aR
RS п

blankblank

partpart



  






 . (25) 

As the variable parameter we accept the angle of the generatrix blanksin  at the set larger radius of the 

blank. The solution is written in the form of the finite differences: 
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





 














 

n

i пi

i
blank

n

i

n

i i

i
part

i

i
blank

blank

aR

aR
S

aR
R

1 0
2

2
0

2

1 1

0

2

0

)()cos(

)(
)1(

cos
)(

)cos(

)(
)1(

sin





















. (26) 

The changes of the thickness of the part with the curved generatrix are presented in figures (figure 

4,5). 

 

1- 5.0 ;  41.3blank ; 2 - 6.0 ;  18.5blank ; 3 – set thickness value 

Figure 4. The distribution of the technologically possible thicknesses of the 

thin-walled convex part at the different values of the coefficient of the 

anisotropy of a transversely isotropic body during variation of the angle of the 

generatrix of the thin-walled blank. ( ;109.1;238.4;144.1  partpart RR 

;094.3а ;00  027.1;15;95.0  blankpartpart RS  ) 

 

The analysis of the graphs suggests, that along with the growth of the coefficient of the anisotropy 

of transversely isotropic body, the thickness fluctuations decrease. 

Let us write the condition of the minimal thickness fluctuations for the thin-walled part for two 

variable parameters of the equation of the generatrix of the conical surface of the blank, taking into 

account the expression (22): 

 min
cos

)(
1)1(1

2

0





























 








 

d
aR

ba
S

П
пbb

part , (27) 

where )(   пbb ba  - the equation of the generatrix of the conical surface of the blank for the 

thin-walled convex part. 

After simplifying the equation (27), we variate the expression (26) by two parameters ba  and bb : 
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 0
coscos

)(
)1(

0




























aR

d

aR

ba
S

П
пbb

part













 

, (28) 

 0
cos

)(

cos

)(
)1(

0





























aR

d

aR

ba
S ппbb

part

П














 

.  

By substituting the integrals with the finite sums, we can find the parameters ba  and bb : 

  









   














  

   

n

i

n

i

n

i ii

п

i

п

n

i

n

i

n

i

n

i ii

п

ii

п

дет
b

aRaRaR

aRaRaRaRS
b

1 1 1
2

22

2

1 1 1 1
22

0

)cos(

1
)

cos
()

)cos(
(

cos

1

)cos()cos(

1

cos

1
























; (29) 

 





 












 

n

i i

n

i

n

i i

iп
b

i

part

b

aR

aR
b

aR
S

a

1
2

1 1
2

)cos(

1
)1(

)cos(
)1(

cos

1
)(














 . (30) 

Now we demonstrate (see figure 5) the technologically possible values of the thincknesses of the 

parts for the case of variation by two parameters. In compatrisson with the variation by the blanksin  

parameter. The acheved values of the technologically possible thicknesses is signifficantly closer  to 

the set value for the convex part with the same geometrical dimensions. 

 

1- 5.0 ; 2 - 6.0 ; 3 –  set thickness value 

Figure 5. The distribution of the technologically possible thicknesses of the 

thin-walled convex part made out of the conical blank. 

( 094.3;23.4;1.1;068.1;9.0  аRRS partpartpart  ) 
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3.  Experimental technique and results 

After analysing the theoretical basis of the flanging process of the conical blank, it should be noted 

that at the same conditions the thinckness fluctuations are lower in case of variation by two parameters 

and higher in the case of vatiation by only one parameter. 

In the result of the experiment we should obtain the convex part made from the brass L62 blank 

with mblank
310213.0S  , 5.0 , and the following geometrical dimensions: 

mаmRmrmR partpart
3333 106.36 ;104.54 ;102.47 ;1091    and mS part

31095.0   

at  4.22part  and mpart
2102.36  . Using the equations (8) and (10) at %5S  we can find 

the dimensions of the conical blank. 

In order to conduct the process in the laboratorical conditions the usiversal hydraulical mashine 

CDMPU-30 was used, with force gauge up to 300 kN (the scale division is 0.1 kN). The speed of the 

crosshead is 0-10 mm/sec. The blank was set in the stamp and subjected to deformation until it 

completely touches the work surface of the die. In order to find the moment then the process has 

ended, the force diagrams of the stamp with and without the blank were recorded (see figure 6). The 

intersection point а  on the diagram registers the moment then the blank completely touches the work 

surface of the die and the force is conducted to the walls of the die. 

 
Figure 6. The diagrams of the deformation force of the stamp with 

(1) and without (2) the blank 

 

The thickness was measured in four sections on eight ring elements, onto which the workpiece was 

marked, using the electronic indicator with a scale division of m610
. The error margin was less than 

two percent. For that purpose the obtained part was cut into four pieces. Before conduction of the 

experiment the flat samples were obtained by rolling on Quarto K220/75-300 DUO (DUO D240/300) 

rolling mill and their properties were estimated by the tests according to GOST 7855-55 and GOST 

1497-61 on Tinius Olsen H5KT machine. The results of the thickness measurements for the part are 

presented in figure (see figure 7). 
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1 - 5blank ; 2 - 8blank ; 3 – experimental points; 4 – set thickness 

Figure 7. The theoretical and experimental values of the thicknesses of the 

thin-walled convex part during flanging of the conical blank. 

4.  Conclusions 

The minimal thickness fluctuation at the set parameters of the flangin process was acheved at the angle 

of the blank 8blank  calculated by the expression (26). Other values, such as 5blank , result in 

the thickness fluctuations of about 1.4 times higher. The suggested method of forming the thin-walled 

convex parts, based on the sheet metall stamping theory, agrees with the experimental data. 

The implementation of the suggested method, based on the flanging process, allows achieving 

minimal thickness fluctuations in the produced part. 
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