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Abstract. The solution of a steady three-dimensional problem for the wave disturbances
induced by a pressure distribution moving with uniform speed along the rectilinear edge of
semi-infinite ice sheet is presented. This external load simulates the air-cushion vehicle. The
problem is formulated within linear hydroelastic theory. The fluid is assumed to be inviscid
and incompressible and its motion is potential. The ice sheet is treated as an elastic thin plate
using the Kirchhoff-Love model. The solution of this problem is constructed using the Fourier
transform and the Wiener-Hopf technique. The displacements of free surface and ice cover
are determined, as well as power characteristics (wave resistance and side force) acting on the
vehicle at various speeds of its movement: subcritical and supercritical relative to the minimum
phase velocity of flexural-gravity waves in the ice cover. It is found that at speeds close to the
critical velocity of flexural-gravity waves, the wave forces undergo sharp changes. It is shown
that for some values of load speed, ice thickness and external pressure, the ice fracture near the
edge is possible.

1. Introduction
The hydrodynamic aspects of an air cushion vehicle (ACV) can be studied by assuming its
action to be equivalent to that of a pressure distribution acting on the free surface of water [1].
The disturbance induced by a pressure distribution moving over infinitely extended free surface
has been thoroughly studied (see, e.g. [2]). However, in polar regions of the World Ocean, there
are situations when the vehicle moves along the edge of ice sheet. Previously we obtained the
solution of a steady three-dimensional problem for flexural-gravity waves generated by a local
pressure distribution moving with uniform speed over semi-infinite ice sheet along its rectilinear
edge [3] - [6]. Three configurations were considered: (i) the surface of fluid is free outside of ice
sheet; (ii) two semi-infinite ice sheets (may be of different thickness) divided by a crack with
free edges; (iii) the fluid is bounded by a rigid vertical wall and the edge of an ice sheet can be
both free or clamped.

In this paper, the steady problem for the fluid and semi-infinite ice sheet under the action
of an external load moving with uniform speed over a free surface along the edge of ice sheet is
considered.

2. Mathematical formulation
The water is taken to be of constant density ρ0 and uniform depth H. The pressure distribution
P (x, y) moves with constant speed U over a free surface along the rectilinear edge of the ice
sheet. We consider the moving together with the load Cartesian coordinate system (x, y, z) with
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x -axis directed perpendicular to the edge of the plate, the y -axis along the edge, and the z
-axis vertically upwards. The upper boundary of fluid is covered by an ice sheet in the region
x < 0 and the surface of fluid is free outside of ice sheet in the region x > 0. The fluid motion
is irrotational and can be described by a velocity potential ϕ(x, y, z). The ice sheet is assumed
isotropic and homogeneous and is treated as an elastic thin plate. It is assumed that the plate
is in contact with the water at all points and the plate draft is ignored.

The boundary-value problem for the velocity potential and the free surface elevation or plate
deflection w(x, y) can be written as

∆3ϕ = 0 (|x|, |y| <∞, −H ≤ z ≤ 0), ∆3 ≡ ∆2 + ∂2/∂z2, ∆2 ≡ ∂2/∂x2 + ∂2/∂y2 , (1)
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Here D = Eh3/[12(1 − ν2)]; E, ν, h, ρ are Young’s modulus, Poisson’s ratio, the thickness
and density of ice sheet, respectively; g is the acceleration due to gravity. For wave motion the
decaying conditions should be satisfied far from the pressure region.

We restrict our consideration to the pressure distribution in the form

P (x, y) =
P0

2
{tanh[κ(y + b)]− tanh[κ(y − b)]}[H(x− x0 + a)−H(x− x0 − a)], (5)

where P0 is the nominal pressure, and a and b are respectively the half-beam and half-length
of pressure region whose center is located at the point (x = x0 > a, y = 0), and H(·) is the
Heaviside function. The rate of pressure fall-off at the edges is controlled by the parameter κ.
As a special case, κ → ∞ is equivalent to a uniform pressure acting on a rectangular area:
|x − x0| ≤ a, |y| ≤ b. This representation was used in [3] - [6]. However, when the load
moves over a free surface, the constant pressure distribution in the rectangular planform leads
to unrealistic oscillations in the wave resistance curve at the low Froude numbers [1].

We are interested in bending stresses in the ice cover. In particular, it is of practical interest
to know whether the moving load can lead to stresses large enough to break the ice near the
edge. The strain tensor ε(x, y) is given by the matrix

ε(x, y) = −h
2

∥∥∥∥ ∂2w/∂x2 ∂2w/∂x∂y
∂2w/∂x∂y ∂2w/∂y2

∥∥∥∥ . (6)

This tensor describes the strain field in the ice sheet.
The forces Fx (side force) and Fy (wave resistance) acting on ACV and its non-dimensional

values Ax, Ay are determined by formulas

(Rx, Ry) = −
∫ x0+a

x0−a

∫ ∞
−∞

P (x, y)
(∂w
∂x

,
∂w

∂y

)
dydx, (Ax, Ay) = − gρ0

2aP 2
0

(Rx, Ry). (7)

3. Method of solution
We describe briefly the solution of problem (1)∼(4) by the Wiener-Hopf technique. The
dimensionless variables and parameters are introduced

(x′, y′, z′, a′, b′, x′0) = (x, y, z, a, b, x0)/H, κ′ = Hκ,
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β = D/(ρ0gH
4), F = U/

√
gH, σ = ρh/(ρ0H), P ′0 = P0/(ρ0gH).

Below, the primes are omitted. We will seek the velocity potential and the displacement in the
form ϕ = UHφ(x, y, z), w = HW (x, y).

We use the Fourier transforms to the variables x and y in the form

Φ−(α, s, z) =

∫ ∞
−∞

e−isy
∫ 0

−∞
φ(x, y, z)eiαxdxdy, Φ+(α, s, z) =

∫ ∞
−∞

e−isy
∫ ∞
0

φ(x, y, z)eiαxdxdy.

From the Laplace equation (1) and no-flux bottom condition (3), we have

Φ(α, s, z) = Φ− + Φ+ = C(α, s)Z(α, s, z), Z = cosh[(z + 1)
√
α2 + s2]/ cosh

√
α2 + s2, (8)

where C(α, s) is unknown function. We introduce the functions F±(α, s), G±(α, s) in the
following manner:
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The functions with indexes +/− are analytical on α in the upper/lower half-plane, respectively.
From boundary conditions (2), we have

G−(α, s) = 0, F+(α, s) = isQ(α, s), (12)

where

Q(α, s) =

∫ ∞
−∞

∫ x0+a

x0−a
P (x, y)ei(αx−sy)dxdy =

2πP0 sin(αa) sin(sb)

ακ sinh[πs/(2κ)]
eiαx0 .

Using (8)∼(12), we can write

F−(α, s) + isQ(α, s) = C(α, s)K1(α, s), G+(α, s) = C(α, s)K2(α, s), (13)

where K1(α, s) and K2(α, s) are the dispersion functions for the free surface waves and the
flexural-gravity ones in a moving coordinate system, respectively:

K1(α, s) =
√
α2 + s2 tanh

√
α2 + s2 − F 2s2,

K2(α, s) = [β(α2 + s2)2 + 1− σF 2s2]
√
α2 + s2 tanh

√
α2 + s2 − F 2s2.

The dispersion relation for free surface waves K1(γ) ≡ γ tanh γ − F 2s2 = 0 has two real roots
±γ0 and the countable set of imaginary roots ±γm (m = 1, 2, ...). The dispersion relation for
flexural-gravity waves K2(µ) ≡ (βµ4 + 1 − σF 2s2)µthµ − F 2s2 = 0 has two real roots ±µ0,
four complex roots ±µ−1, ±µ−2, µ−2 = −µ̄−1 (the bar denotes complex conjugation), and the
countable set of imaginary roots ±µm (m = 1, 2, ...). Then the roots of dispersion functions

Kn(α, s) = 0 (n = 1, 2) are χm(s) =
√
γ2m(s)− s2 (n = 1) and αm(s) =

√
µ2m(s)− s2 (n = 2).

We take the values of these roots from the upper half-plane.
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Excluding the function C(α, s) from equations (13), we obtain

F−(α, s) + isQ(α, s) = G+(α, s)K(α, s), K(α, s) = K1(α, s)/K2(α, s). (14)

In accordance with the Wiener-Hopf technique, we factorize the function K(α, s):

K(α, s) = K−(α, s)K+(α, s), K±(α, s) =
µ−1µ−2

(α± α−1)(α± α−2)
N±(α, s), N± =

∞∏
j=0

(α± χj)µj
(α± αj)γj

,

where the functions K± are analytical in the upper/lower parts of complex plane α, respectively.
Dividing (14) by K−(α, s), we have

F−(α, s)

K−(α, s)
+

Ω(s)ψ(α)

K−(α, s)
= G+(α, s)K+(α, s),

where

Ω(s) =
πsP0 sin(sb)

κ sinh[πs/(2κ)]
, ψ(α) =

eiα(x0+a) − eiα(x0−a)

α
.

Then we use the representation

ψ(α)

N−(α, s)
= L+(α, s) + L−(α, s), L±(α, s) = ± 1

2πi
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−∞∓iλ

ψ(ζ)dζ
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,

and as a result we obtain the equation

F−(α, s)

K−(α, s)
+ Ω(s)

(α− α−1)(α− α−2)
µ−1µ−2

L−(α, s) =

G+(α, s)K+(α, s)− Ω(s)
(α− α−1)(α− α−2)

µ−1µ−2
L+(α, s).

The functions on the left-hand and right-hand sides of this equation are analytical in the lower
and upper parts of complex plane α, respectively. Then we have analytical function over the
entire complex plane α. By Liouville’s theorem, this function is a polynomial. The degree of
the polynomial is determined by the behavior of this function as |α| → ∞ and is equal to one.
Consequently, we can write

G+(α, s)K+(α, s)− Ω(s)
(α− α−1)(α− α−2)

µ−1µ−2
L+(α, s) = Ω(s)[a0(s) + a1(s)α],

where a0(s) and a1(s) are unknown functions which are defined from edge conditions (4).
The deflection of the plate and the free surface elevation are determined by performing the

inverse Fourier transform:
at x < 0

W (x, y) = −1

2

∫ ∞
−∞

eisyΩ1(s)

∞∑
j=−2

µjthµje
−iαjx

K+(αj , s)K ′2(αj , s)

[
a0(s) + a1(s)αj+

(αj − α−1)(αj − α−2)
µ−1µ−2

∞∑
m=0

ψ(χm)

(χm − αj)N ′−(χm, s)

]
ds, Ω1(s) =

Ω(s)

πs
,
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at x > 0

W (x, y) = −F
2

2

∫ ∞
−∞

eisys2Ω1(s)
∞∑
j=0

eiχjxK+(χj , s)

K ′1(χj , s)

[
a0(s)− a1(s)χj+

(χj + α−1)(χj + α−2)

µ−1µ−2

∞∑
m=0

ψ(χm)

(χm + χj)N ′−(χm, s)

]
ds− F 2

2

∫ ∞
−∞

eisys2Ω1(s)Λ(x, s)ds,

where

Λ(x, s) =
∞∑
j=0

1

χjK ′1(χj , s)

 exp[iχj(x0 − x+ a)]− exp[iχj(x0 − x− a)] (0 < x < x0 − a),
exp[iχj(x0 − x+ a)] + exp[iχj(x− x0 + a)]− 2 (|x− x0| < a),

exp[iχj(x− x0 + a)]− exp[iχj(x− x0 − a)] (x > x0 + a),

where the prime denotes the partial derivative of a function with respect to its first variable.
Using free-edge conditions (4), we obtain the system of two linear algebraic equations to

define the coefficients a0(s) and a1(s). All integrals on α are evaluated by the residue method.
The analysis of dispersion relation for free surface waves shows that at any speed of the load
there is a value s0, that γ0(s) < |s| at |s| < s0 and γ0(s) > |s| at |s| > s0, in this case χ0 is real.
Gravity waves spread at |s| > s0. At U ≥ Uc ≡

√
gH, we have s0 = 0. The velocity Uc is called

the limit of long waves.
For the infinitely extended elastic plate, there is a minimum phase velocity of flexural-gravity

waves cm and always cm < Uc (see, e.g. [7]). If U < cm, then µ0(s) < |s| for any values of the
parameter s, and the real roots of dispersion relation K2(α, s) = 0 are absent. If cm < U < Uc,
then there are two values s1 and s2 such that µ0(s) > |s| at s1 < s < s2, in this case α0 is real.
Flexural-gravity waves extend back and forward in the plate for s1 < |s| < s2. With increasing
speed of the load, the value s1 decreases, and the value s2 increases. At a speed greater than
the long-wave limit Uc, we have s1 = 0.

4. Numerical results
The following input data are used for water, ice sheet and external load: E = 5GPa,
ν = 1/3, ρ0 = 103 kg/m3, ρ = 900 kg/m3, P0 = 103Pa, a = 10 m, b = 20 m,
x0 = 50 m, κ = 5/b, H = 100 m. The speed of load U and the thickness of ice sheet h
vary in the calculations. The minimum phase velocity of the flexural-gravity waves in infinitely
extended ice cover increases with increasing ice thickness and for h = 0.5, 1, 2 m is equal to
cm ≈ 12.06, 15.59, 20.09 m/s, respectively. The long-wave limit Uc is approximately equal to
31.32 m/s.

Figure 1 shows the three-dimensional plots for the vertical displacements of free surface at
x > 0 and ice sheet at x < 0 for the motion of load at speed U = 15 m/s and different ice
thicknesses: h = 0.5 m (Fig. 1(a)) and h = 1 m (Fig. 1(b)). The load moves from left to right.
The load speed is supercritical for an ice cover 0.5 m thick and wave motions are excited in the
ice cover, extending to a sufficiently large distance from the edge of ice cover. In the case of
thicker ice, h = 1 m, the load speed is subcritical and in the ice cover only weak wave motions
appear decaying rapidly away from the edge. The waves in fluid near the ice cover are weaker
for the thinner ice because waves in the plate are greater and absorb stronger energy.

The free surface elevation and ice deflection at x = 0 are shown in Fig. 2(a) for U = 15 m/s
and h = 1 m. We can see that the lengths of surface waves and flexural-gravity ones differ
substantially near the edge of ice cover. On the free surface, the superposition of waves reflected
from the edge of ice cover and generated by the pressure region occurs.

The strains along the edge of ice sheet at x = 0 for h = 1 m and two different speeds of
load U = 10, 15 m/s are shown in Fig. 2 (b). To find the maximum strain in the ice sheet,
we need to find the largest eigenvalue of the strain tensor (6) at each location. The strains
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Figure 1. Wave patterns of ice cover (x < 0) (gray) and free surface (x > 0) (blue) for the load
moving with speed U = 15 m/s and ice thickness h = 0.5 m (a) and h = 1 m (b).

Figure 2. (a) Free surface elevation (1) and the deflection of ice sheet (2) along the ice edge
at x = 0, U = 15 m/s, h = 1 m. (b) Strains ε/ε∗ along the ice edge at x = 0 for h = 1 m:
U = 10 m/s (1) and U = 15 m/s (2).

are proportional to the magnitude P0 of external load within the linear theory. The strains are
scaled with ε∗ = 8 · 10−5, where ε∗ is the yield strain at which a material begins to deform
plastically. According to [8], any strains greater than the yield strain ε∗ are assumed to lead to
ice fracture. We can see that at U = 10 m/s, h = 1 m and at given value of the external load
P0, ice does not break whereas at speed U = 15 m/s and the same values h and P0 the arising
strains exceed the value ε∗ and the destruction of ice can be possible.

Non-dimensional values of wave forces Ax and Ay in (7) acting on moving vehicle are presented
in Fig. 3 as functions of the load speed. It is known (see e.g. [1]) that when the pressure region
(5) moves along an unbounded free surface, side force Rx in (7) is identically zero and wave
resistance Ry is

Ry =
2πP 2

0F

ρ0gHκ2

∫ ∞
K0

sin2( b
FH

√
k tanh k)

√
k tanh k

(F 2k − tanh k)3/2 sinh2( π
2FHκ

√
k tanh k)

sin2
( a

FH

√
k(F 2k − tanh k)

)
dk,

(15)
where K0 is the real positive root of equation K0F

2 = tanhK0 if F < 1 while K0 = 0 if F > 1.
When the pressure region moves along the edge of ice cover, the side force arises at speeds of

load movement close to critical velocity cm for given ice thickness. As the speed of load increases,
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Figure 3. The non-dimensional values of side force Ax (a) and wave resistance Ay (b) for semi-
infinite ice sheet with different thickness: curves (1-3) correspond to h = 0.5, 1, 2 m. Curve 4
shows the wave resistance for infinite free surface (15).

the side force decreases and tends to zero in an oscillatory manner. The greatest difference of
the wave resistance from its value for infinite free surface is observed also at near-critical values
of load speed. For subcritical speeds, the disturbances spread only behind the load and do not
influence on the vehicle. If U > cm, flexural-gravity waves extend forward in the plate and
disturb the fluid near the vehicle. With increasing of speed, the waves in the plate spreading
forward become shorter and of smaller amplitude and the influence of ice cover on wave forces
decreases.

5. Conclusion
The three-dimensional linear hydroelastic problem on the waves induced by a uniformly moving
load over a free surface along the rectilinear edge of a semi-infinite ice sheet is solved. This
problem arises, for example, for the air cushion vehicle. The solution is obtained by using the
Fourier transform and the Wiener-Hopf technique. The vertical displacements of ice cover and
fluid, and wave forces acting on a moving vehicle are defined for different values of the load
speed. The speed of the load is shown to affect strongly the response of ice cover. The response
is maximum for the load speeds close to the critical speed of hydroelastic waves in infinitely
extended ice cover. Wave forces sharply oscillate when the speed of motion is near-critical. It is
shown that under certain conditions, the ice at the edge of ice sheet can fracture.
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