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Abstract. The snow-ice cover is considered as a three-phase continuous medium consisting
of water, air, and ice. The mathematical model is based on the equations of mass conservation
for each phase, the two-phase filtration equation for water and air in a movable porous ice
skeleton, the rheological equation for porosity, the balance of forces and the equation of energy
conservation for the ice-water-air system. The paper presents the results on analytic and
numerical solutions of the problems under consideration.

1. Introduction
The urgency of the study of heat and mass transfer in multiphase media is due to the fact that
numerous problems that arise, along with technological processes also in ecology and nature
use lead to the need to model the processes of interpenetrating motion of continuous media.
The constructed in this case mathematical models, as a rule, are nonclassical, and require the
development of new approaches to their justification and numerical modeling.

A large class of filtration problems in a deformable porous medium with phase transitions is
the problem of heat and mass transfer in a melting snow-ice cover [1]. The predominant part
of the runoff of the northern rivers is formed due to the melting of the seasonal snow cover.
Snowmelt conditions have a decisive influence not only on the amount of thawed water entering
the reservoirs, but also on their quality. In addition, the amount of snow cover (snowfall) affects
the freezing of the surface layer of soils and, consequently, its absorbency and determines the
relationship between slope and ground runoff. Therefore, modeling the state of the snow cover
and salt transfer during the snow melting period is of great importance in the development of
methods for calculating and forecasting the hydrographers of spring flood and water quality in
reservoir-receivers. There is a large number of works on salt-mass transfer in melting snow,
in which the data of observations and empirical dependences are used [2]. Most empirical
models are one-dimensional and do not allow to calculate the fluid filtration rate, and models
that calculate the fluid filtration rate usually do not take into account phase transitions or are
suitable only for specific modes of water movement in the snow cover, they also do not provide
the necessary information on the velocity field and the saturation of the fluid phase necessary
for the assessment of the flow of pollutants.

Thus, for a reliable prediction of pollutant discharge, it is necessary to know the velocity field
and the saturation of the water phase, i.e., it is proposed to use complex models describing the
joint movement of pollutants and water in the snow cover, taking into account different boundary
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conditions, phase transitions and sublimation process. These models will allow calculating
the non-stationary movement of pollutants within the snow cover and assess the surface and
underground runoff of substances. They must take into account a number of important factors,
including variable snow cover porosity, phase transitions, specificity of boundary conditions (in
particular, the presence of frozen or not frozen ground). The fundamentals of the theory of the
motion of water and air in melting snow are laid in the works of S.C. Colbeck [3] and his followers.
However, snow in these works, although considered as a multiphase medium, deformation of ice
and phase transitions were not taken into account.

The purpose of this work is: to build a model on the joint movement of water and air in
melting snow, taking into account phase transitions and deformation of ice; the statement of the
problem of ablation of deformed ice cover; statement of the problem of distribution of water flow
of melting snow between ground and surface waters; the construction of a model of groundwater
movement in contact with frozen ground.

2. Mathematical models of the snow cover
Due to the high demand for data on snow cover, for practical purposes, there is a significant
number of works devoted to field observations (see, for example, [4], [5]). For estimating
calculations, simple balance models (see [6], [7]) and more complex models are used [3].

Following [8, 9, 10] we will consider melting snow as a continuous medium consisting of water
(i = 1), air (i = 2) and ice (i = 3) constituting a solid porous skeleton. The filtration of water
and air in a porous ice skeleton is described by the equations of mass conservation for each of
the phases, taking into account phase transitions, the equations of two-phase filtration and the
heat balance equation for a three-phase medium

∂ρi
∂t

+ div(ρi~ui) =
3∑
j=1

Iji, i = 1, 2, 3, Iji = −Iij ,
3∑

i,j=1

Iij = 0, (1)

φ(~ui − ~u3) = −K0
k0i
µi

(∇pi + ρ0i~g), i = 1, 2, p2 − p1 = pc(s1, θ),
2∑
i=1

si = 1, (2)

(
3∑
i=1

ρ0i ciαi)
∂θ

∂t
+ (

3∑
i=1

ρ0i ciαi~ui)∇θ = div(λc∇θ)− LsI23 + LiI13. (3)

Here ~ui is the speed of the i phase; ρi is the reduced density associated with the true density
ρ0i and the volume concentration αi by the relation ρi = αiρ

0
i (the condition

∑3
i=1 αi = 1 is a

consequence of the definition of ρi); Iji is the intensity of the mass transition from j into the
i component per unit volume per unit time; φ is the porosity of the snow; s1, s2 - saturation
of water and air (α1 = φs1, α2 = φs2, α3 = 1 − φ); K0(φ) is the filtration tensor; k0i - phase
permeabilities (k0i = k0i(si) ≥ 0, k0i|si=0= 0); µi - dynamic viscosity; pi is the phase pressure; pc
is the capillary pressure, ~g - acceleration vector of gravity; θ is the temperature of the medium
(θi = θ, i = 1, 2, 3), ci = const > 0 - the heat capacity of the i phase at constant volume;
Li = const > 0 - specific heat of melting of ice; Ls = const > 0 - specific heat of ice sublimation;
λc is the thermal conductivity of snow.

The system of equations (1) - (3)with respect to the characteristics ~ui, pi, si and θ of
immiscible liquids moving in a non-deformable porous medium is closed either by the assumption
of incompressibility of liquids, i.e. ρ0i = const, or by the condition ρ0i = ρ0i (pi). The obtained
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mathematical model in the case of a stationary porous medium (~u3 = 0) and for a given porosity
φ is called the Musket-Leverett model.

The principal point is to take into account the compressibility of the porous medium.
Following [11], we supplement the system (1) - (3)

div~u3 = − 1

ξ(φ)
pe − βt(φ)(

∂pe
∂t

+ ~u3 · ∇pe), (4)

ρtot~g + div((1− φ)η(
∂~u3
∂~x

+ (
∂~u3
∂~x

)∗))−∇ptot = 0, (5)

where pe = ptot − pf is the effective pressure, ptot = φpf + (1 − φ)p3 is the total pressure,
pf = s1p1 + s2p2, p3 are, respectively, the pressures of the liquid and solid phases, ρtot =
(1 − φ)ρ03 + φ(s1ρ

0
1 + s2ρ

0
2) is the total density; η is the viscosity of a solid skeleton, ξ(φ) and

βt(φ) are the coefficients volumetric viscosity and volume compressibility of a porous medium
are given functions.

After determining the saturation of water and air si, temperature θ and the filtration rates
~vi = φsi(~ui − ~u3) we can consider the problem of the motion of a conservative impurity due to
the transfer of the water phase and diffusion. This process describes the convective diffusion
equation [12]:

R+
∂

∂t
(φs1σ) + div(σ~v1 −D∇σ) = 0. (6)

Here σ is the impurity concentration, ~v1 is the water filtration rate, R is the source that takes
into account the possible deposition of the impurity. The following dependencies are used:
D = η1 + λ0|~v1|, η1 = const > 0 is the coefficient of molecular diffusion, λ0 = const > 0 is the
dispersion parameter; R = −Γs1(σ∗ − σ), Γ = const > 0, σ∗ = const ∈ [0, 1]. System (1) - (5)
is very complex and has been studied only in individual cases [13, 14, 15].

2.1. Self-similar solution
On the basis of [13], a self-similar solution of the traveling wave type for the problem of salt
transfer in melting snow is constructed under the following assumptions:

~u3 = 0, I13 = I13(θ), I12 = 0, I23 = 0, Ls = 0, ρ0i = const . (7)

By (7), the continuity equation for the solid phase implies
∂ρ03(1−φ)

∂t = I31(θ). In particular, we
can assume that porosity is a function of temperature.

The following dependence is accepted: α3(θ) = 0, θ ≥ θ+ (ice melting temperature);
α3(θ) = 1 − φ− − φ1(θ − θ1), θ1 ≤ θ ≤ θ+;α3(θ) = 1 − φ−, θ ≤ θ1. Here 0 < θ− <
θ1 < θ+, φ− = φ(θ−), φ1 = (1 − φ−)/(θ+ − θ1) – specified parameters. Also assumed
K0 = const > 0, λc = ac + bcρ

2
c , ρc =

∑3
i=1 ρ

0
iαi, (ac, bc) = const > 0, ~g = (0, 0,−g); the

unknown functions depend only on the variable ξ = x3 − ct ∈ (−∞, 0), c = const < 0.
The system of equations (1) - (5) reduces to a system of equations for s(ξ) ≡ s1(ξ) and θ(ξ)

of the form

λc
dθ

dξ
= f1(θ), a0(s) =

ds

dξ
= f2(s, θ),

and s, θ satisfy the following conditions θ(0) = θ+, s(0) = s+, (θ, s, dθdξ )ξ→−∞ = 0. Here functions

f1(θ), f2(s, θ), a0(s)(a0(0) = a0(1) = 0) can easily be recalculated through the initial parameters
of the source system [13]. The solution of the formulated problem exists and in particular has
properties: 0 ≤ s(ξ) ≤ 1, there exists a point ξ∗ ∈ (−∞, 0) such that s(ξ) = 0 for all ξ ≤ ξ∗.
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In the self-similar case, the following problem arises for finding the impurity concentration σ:

−Γs(σ∗ − σ) + d
dξ (|c|ρ

0
3

ρ01
(φ− φ−)σ −D dσ

dξ ) = 0,

σ|ξ→−∞= 0, ∂σ
∂ξ |ξ→−∞= 0, σ(0) = σ+ ∈ (0, 1].

(8)

Since s(ξ) = 0 for ξ ≤ ξ∗, then σ(ξ) = 0, ξ ≤ ξ∗. Thus for σ(ξ) we consider the problem

d
dξ (D dσ

dξ − |c|rσ) + Γs(σ∗ − σ) = 0, ξ∗ < ξ < 0,

σ(ξ∗) = 0, σ(0) = σ+ ∈ (0, 1], σ∗ ∈ [0, 1].

(9)

Here r = 0, D = η1 + λ0|c|φ−s for ξ ∈ [ξ∗, ξ1]; r =
ρ03
ρ01

(φ− φ−), D = η1 + λ0|v1|, v1 = |c|(φs− r)
for ξ ∈ [ξ1, 0].

The solution of problem (8), (9) exists and satisfies inequality 0 ≤ s ≤ 1. The numerical
investigations of problem (8), (9) were carried out in [16].

2.2. The numerical study of the two-dimensional problem
Based on the hypotheses (7) of paragraph 2.1, the two-dimensional problem of the motion of
water and air in melting snow is considered. The system (1) - (5) reduces to a system of three
equations with respect to the saturation of the water phase s, the temperature θ and the reduced
pressure p [1]:

∂

∂t
(ρ01φs) = div(ρ01(K0a∇s+K1∇p+ ~f0)) +

∂

∂t
(ρ03φ(1− s)),

(
3∑
i=1

ρ0i ciαi)
∂θ

∂t
+ (

2∑
i=1

ρ0i ci~vi)∇θ = div(λc∇θ) + ν
∂ρ3
∂t

,

div(K∇p+ ~f) = − ∂

∂t
((1− ρ03

ρ01
)φ),

where ν – specific heat of melting ice,

p = p1 −
∫ 1

s

∂pc
∂ξ

k̄02
k
dξ, k = k̄01 + k̄02, k̄0i =

k0i
µi
,

K = kk0,Ki = K0k̄0i, a = −∂pc
∂s

k̄01k̄02
k

≥ 0,

~f =
2∑
i=1

(Kiρ
0
i~g), ~f0 = K1ρ

0
1~g.

The solution of this system is sought in the region Ω = 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ H under the
following conditions

s(x1, x2, 0) = s0(x1, x2), θ(x1, x2, 0) = θ0(x1, x2),

s(x1, 0, t) = 0, θ(x1, 0, t) = θ−, s(x1, H, t) = 0, θ(x1, H, t) = θ+,

p(x1, H, t) = pH(x1, t), p(x1, 0, t) = p0(x1, t),

∂s

∂x
=
∂θ

∂x
=
∂p

∂x
= 0, x1 = 0, x1 = L.

The dependence of porosity on temperature is described in paragraph 2.1. For the numerical
solution of this initial-boundary value problem, the variable direction method is used. After
finding the temperature θ, the filtration rate ~v1 and the saturation s on the basis of equation
(6), we can consider the problem of the motion of a conservative impurity in melting snow.
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2.3. The problem of sublimation of the snow-ice cover
In addition to thawing, a high role in the balance of the snow cover is played by the sublimation
process. Under certain conditions, a significant mass of snow passes into the gas phase, bypassing
the liquid phase. The sublimation process is significantly accelerated by the effect of the wind
impaction the snow. A mathematical study of the windless sublimation of snow was carried out
in work [17] in which, in analogy with [11], a self-similar solution is constructed with allowance
for the phase transition of ice into moist air. The formula for the intensity of the phase transition
I32 (ice-moist air) is obtained in work [18] under wind-induced conditions:

I32(x, t) =
dm

dt

c(x, t)
4
3πr

3
,

dm

dt
=

2πr( ρ
ρn(θ)

− 1)

Ls
KθNu(LsM

Rθ − 1) + 1
Dρn(θ)Sh

. (10)

Here c(x, t) is the concentration of ice, dm/dt is the rate of change in mass, r(m) is the radius
of the particle, ρ is the air density, θ is the absolute temperature, ρn(θ) is the saturated water
vapor density, Ls is the heat of sublimation of ice, M is the molecular mass of water, D is the
diffusion coefficient, R is the universal gas constant, K is the molecular thermal conductivity in
the atmosphere, Nu is the Nusselt number, Sh is the Sherwood number.

Formula (10) is actively used to describe the processes of sublimation in the snow cover [19],
[20]. As an example, let us consider the problem of the motion of moist air in a mobile porous
ice skeleton. The system (1) - (5) in the case under consideration takes the form

∂φρ02
∂t

+ div(φρ02~u2) = −I32, (11)

∂(1− φ)ρ03
∂t

+ div((1− φ)ρ03~u3) = I32, (12)

φ(~u2 − ~u3) = −K0
k

µ
(∇p2 + ρ02~g), p2 = Rθρ02, (13)

(
3∑
i=2

ρ0i ciαi)
∂θ

∂t
+ (

3∑
i=2

ciρ
0
iαi~ui)∇θ = div(λc∇θ)− LsI32. (14)

Here we use the notations adopted for the system (1) - (5) (taking into account the absence
of the liquid phase: α2 = φ, α3 = 1 − φ, ptot = φp2 + (1 − φ)p3, pe = ptot − p2). In case I32 = 0
and θ = const the system (11) - (14) was used in [15]. In case I32 6= 0, a self-similar solution
of the isothermal motion of a compressible gas in a deformable porous medium is constructed,
and it is established that 0 ≤ ρ2 ≤ ρn, 0 ≤ φ ≤ 1 [21].

2.4. Distribution of water flow of melting snow between groundwater and surface water
The slope current of surface and ground waters, caused by intensive snowmelt, is considered.
Such flows are characteristic of hilly regions. Consider a two-dimensional (in the vertical plane
x, z) flow of groundwater to the river bank in a layer of soil between a horizontal water column
and a land surface inclined to the river. The current is caused by the melting of snow, the
intensity of which is greater than or equal to the filtration coefficient of the upper layer of the
soil, as a result of which a slope runoff over the surface of the earth can also be formed. The
complex aspects of freezing of such water are not yet considered, i.e. the case of positive surface
temperature is modeled. The underground part of the current is modeled by the equation of
water content:

div(K∇Φ) =
∂W

∂t
,
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where the pressure Φ = p− z (the z axis is directed downwards), p is the capillary pressure. At
full saturation of the pores p ≥ 0 (it is assumed that the atmospheric pressure is 0), coefficient
of moisture conductivity K = Ks, volume moisture W = Ws. For incomplete saturation, when
p < 0, it is assumed that the dependences of K and W on p can be described by the expressions
[22]

K = Ks

(
W −Wr

Ws −Wr

)n
, W = Wr + (Ws +Wr) exp(p/p0).

Here Ks is the filtration coefficient (at full saturation); Ws is the total saturation humidity, Wr

is the residual water content; p0 is the conditional height of capillary uplift; n ≈ 3.5. The slope
runoff on the surface of the earth Γ in the presence of a water layer (p ≥ 0) is modeled by the
diffusion wave equation [23] in the following form:

β

α

∂

∂l

(
p5/3

∂Φ

∂l

)
+R−Q =

∂p

∂t
,

where p, Φ are the sought in points of Γ; R is the specified snowmelt intensity; Q is the flow
inside the domain; γ is the inverse coefficient of the roughness coefficient, β = cos2 αtg1/2α,
where α is the slope angle of the earth’s surface; l = x/ cosα is a coordinate along Γ. The
boundary conditions for W and φ are described in [22].

2.5. Movement of groundwaters in contact with frozen ground
If the snowmelt passes in the conditions of the frozen ground, the problem of distributing the
water flow of melting snow between ground and surface waters becomes much more complicated.
In particular, there is a need to describe the movement of groundwater in the aquifer, which is
in contact with the frozen ground.

Following [24], frozen ground will be considered as a thermoelastic porous medium, the porous
space of which fills the ice. For the stress tensor of the frozen soil skeleton P si, the Dumel-
Neumann law is adopted. For the stress tensor P of a frozen ground, it is natural to take
P = (1− φ)P si + φP i, where φ is the porosity, P i is the stress tensor ice.

In the region of groundwater movement, which have a positive temperature, the system of
equations (1) - (5) is considered. The boundary between the frozen ground and the groundwater
area is determined by the phase diagram of the frozen soil and by the strong discontinuity
equation.

3. Conclusion
An analysis of mathematical models of the melting snow-ice cover, taking into account phase
transitions and deformation of the ice skeleton under different rheological ratios, is carried out.
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