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Abstract. The paper considers a tearing mode crack (mode III fracture) propagation in elasto-
plastic materials having ultimate strain. The fracture process of such material has been described 
in the modified Leonov-Panasyuk-Dugdale model with using an extra parameter such as the 
plastic zone width (the pre-fracture zone width. The two-parameter criterion of quasi-brittle 
fracture for mode III cracks in elasto-plastic material has been derived for conditions of the low-
scale yielding in the presence of a stress field singularity of the field in the vicinity of a crack. 
The deformation fracture criterion has been deduced for the initial crack tip, whereas the force 
criterion has been deduced for tangential stresses with account for their averaging at the tip of a 
model crack. The lengths of initial and model cracks differ by the length of the pre-fracture zone. 
The sequential analysis of application possibility of the proposed strength criterion has been 
performed when determining fracture loads for solids with tearing mode cracks. Fracture 
diagrams of quasi-brittle fracture under conditions of antiplane deformation have been plotted 
for a band with an edge crack.  

1.  Introduction 
In studies [1–3], the two-parameter (coupled) discrete-integral fracture criterion has been proposed. This 
criterion may be used when constructing fracture diagrams of plane specimens with opening mode 
cracks (mode I fracture). In the plane representing stress versus crack length, curves are plotted, which 
divide this plane into three subareas corresponding to the absence of fracture, damage accumulation in 
a pre-fracture zone, and fragmentation of a specimen. Fitting constants applied for analytical description 
of fracture diagrams of materials in the presence of cracks is by the way of approximation of the classical 
stress-strain diagram of starting material and the critical stress intensity factor (SIF). 

The coupled fracture criterion is applied in the present paper for determination of critical loads for 
an edge mode III crack in a band made from elasto-plasic material. 

2.  Quasi-brittle fracture diagrams tearing mode crack 
The proposed model [1–3] uses the non-classical scheme of material failure. 

Suppose that a (τ γ− )-diagram is obtained during laboratory experiment when testing macro-
specimen. We take the simplest approximation of the real (τ γ− )-diagram of material under study when 
this diagram is approximated by a two-link broken line. When approximating, original material is 
substituted for ideally plastic material having the ultimate strain. Given in figure 1, a are the original 
( )τ γ− - diagram (curve 1) and its two-link approximation (curve 2). Parameters of this approximation 
are selected so that the areas under the curves should be coincident. The approximation parameters are: 
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G  is shear modulus, Yτ  is shear yield point of the material and constant stresses acting according to the 
Leonov-Panasyuk-Dugdal (LPD) model [4, 5], 0γ  is the maximum elastic strain of material 0( )Y Gτ γ=  
and 1γ is the maximum material strain. The approximation of the (τ γ− )-diagram within the segment 

0 1γ γ γ< <  can be treated as ideal plasticity.  

 
Figure 1. The original diagrams of material strain (curve 1) and its two-link approximation 
(curve 2) (a); the loading scheme of a band with edge tearing mode crack (b). 

Suppose that r  for material with the regular structure is the grain diameter, more exactly, it is the 
effective diameter of breakdown structures [3]. The Neuber-Novozhlov approach [6, 7] allows solutions 
having the singular term with integrable singularity to be used for structured media.  

Consider an edge tearing mode crack in a band with the width L  (Figure 1, b). Let this plane tearing 
mode crack be extended rectilinearly. Except for the length 0l  of a real crack-cut, we introduce into 
consideration the length of a model crack-cut. The length of the model crack-cut is 0l l= + ∆ , the pre-
fracture zone of length ∆  being located on the real crack continuation. The fracture problem has two 
linear scales: if a grain diameter r  is governed by the material structure, then the second linear scale is 
produced by the system itself. This second linear scale is the pre-fracture zone length ∆  that changes in 
accordance with how the following values change: 1) the real crack length and 2) the load intensity. 
Emphasize that critical pre-fracture zone length ∗∆  under single loading is the well-defined parameter 
( 0l l∗ ∗= + ∆  is the critical macro-crack length). 

When plotting diagrams of quasi-brittle fracture, sufficient fracture criteria are used [1–3] when 
short, long macro-cracks and those of medium length are considered. The sufficient (coupled) criterion 
can be represented in the form of two relations for short macro-cracks and macro-cracks of medium 
length 

0

1 ( ,0)
r

yz Yx dx
r

τ τ=∫ ,  2 ( )w δ∗ ∗−∆ = .    (1) 

Here ( ,0)yz xτ  are shear stresses on the continuation of cracks; Oxyz  is the Cartesian coordinate system 
provided that the coordinate origin is coincident with the model crack tip in the modified LPD model 
[4, 5], the axis Ox  is directed along the crack plane; 2 2 ( )w w x=  is the displacement of the model 

macro-crack flanks ( 0x < ); δ ∗  is the critical displacement of flanks of this crack, and ∗∆  is the critical 
pre-fracture zone length (critical values obtained via the sufficient and necessary fracture criteria are 
marked with superscripts ∗  and 0 ). Attention should be given to the fact that the proposed criterion (1) 
and (2) is coupled. Figure 2 demonstrates compressive stresses acting in the LPD model on the crack 
continuation (a) and the approximation of a plastic zone by a rectangular pre-fracture zone (b). Under 
conditions of antiplane deformation, by “compressive” are meant stresses opposite in sign to stresses
τ∞ , acting at remote boundaries. The pre-fracture zone occupies only a part of the plastic zone. 



Polar Mechanics 2018

IOP Conf. Series: Earth and Environmental Science 193 (2018) 012038

IOP Publishing

doi:10.1088/1755-1315/193/1/012038

3

 
 
 
 
 
 

 
Figure 2. Compressive stresses acting in the LPD model on the continuation of a crack (a); 
approximation of the plastic zone (ellipse) by the rectangular pre-fracture zone (b). 

The field of shear stresses ( ,0)yz xτ  on the model crack continuation 0x >  may be represented as a 
sum of two terms 

III( ,0)
2yz nom
Kx

x
τ τ

π
= + .    (2) 

Here nom rYτ τ∞=  are nominal stresses, otherwise the regular part of the stress field in the vicinity of a 
model crack, ( / )r rY Y l L=  is the correction factor to be determined, III III III 0K K K∞ ∆= + >  is the total 

stress intensity factor (SIF); III 0K ∞ >  is the SIF generated by test conditions; III 0K ∆ <  is the SIF 
generated by the given constant stresses Yτ , acting in the pre-fracture zone. The first and second 
summands in relation (2) are the singular and regular part of the solution, respectively. The first equality 
(1) in the coupled criterion keeps track of stresses acting on the continuation of a model crack and their 
attainment of yield point Yτ  after averaging, and the second equality of this criterion describes blunting 
of a real macro-crack tip. 

We pass to assessment of singular terms of stress fields for edge cracks. Inasmuch as deformation of 
material under conditions of the low-scale yield is studied, then for specimens with sharp edge cracks, 
the following relations [8] are obtained for the total SIF III III III 0K K K∞ ∆= + > : 

III sK Y lτ π∞ ∞= ,  2 tg
2s

L lY
l L

π
π

= ,  III
21 arcsin 1YK l

l
τ π

π∆
 ∆ = − − −    

.  (3) 

When considering quasi-brittle fracture under conditions of low-scale yield with account for inequality 

0/ 1l∗∆   to the accuracy of higher order of infinitesimals for the summand ( )arcsin 1 / l− ∆  in relation 

(3) the representation ( )arcsin 1 / / 2 2 /l lπ− ∆ ≈ − ∆  is valid for / 1l∆  . Finally, the simplified 
expression for SIF IIIK ∆  has the form 

III
22 YK τ
π∆
∆

= − .    (4) 

The correction factor 1 2 /
1 / 1 /r s

l LY Y
l L l L

= −
− −

, that accounts for a band width L , is deduced from 

equilibrium condition of stresses applied to remote boundaries and stresses acting on the ligament .L l−  
As l L→ , then nomτ →∞  are nominal stresses that reflect the rise in stresses with vanishing the net 
cross-section under constant loading. Both coefficients sY  and rY  for an edge tearing mode crack in a 
semi-infinite solid are identically equal to unity.  

When there exists the singular term of the solution under conditions of the low-scale yield, the model 
crack opening 2w  in a band is given as  
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III42 ( ,0)
2

K xw x
G π

−
− = .    (5) 

The critical crack opening of a model crack δ ∗  in relation (1) depends on a plasticity margin 1 0γ γ−  
of studied material and the plastic zone width a  at the tip of a real crack. This critical opening of model 
cracks δ ∗  calculated for specimens with a sharp crack is given in such a way 

1 0( )aδ γ γ∗ = − .    (6) 

Let the pre-fracture zone width a  in relation (6) be proportional to the plastic zone diameter for 
specimens with a sharp crack manufactured from a homogeneous material [9] 

2
III 01

Y

Ka χ
π τ

∞ 
=   

 
.    (7) 

Here 1χ <  is some correction factor for determination of which it is necessary to use the data of the 
numerical or laboratory experiments. Emphasize that the plastic zone width in relation (7) depends on 
the length 0l  of an initial crack, i.e., for SIF ( )III 0 III 0 0 0/ , /K K l r l L∞ ∞=  representation (3) is used. The 
model crack length l  and parameter /l L  in this representation are substituted by the initial crack length 

0l  and parameter 0 /l L , respectively. The critical opening of the model crack δ ∗  in relation (6) is fitted 
so that the material at the real crack tip fails when 1γ  is the maximum material strain. 

Let us obtain estimates of the critical material state at the crack tip. All necessary analytical 
expressions are available in relations (2), (3), and (5) – (7) to make use of sufficient (coupled) criterion 
(1). After appropriate transformations, the original equalities of criterion (1) change into approximate 
equalities for a band with a crack: 

( ) ( )III III, , , ,
2Y r

l rK l K l Y
L

πτ τ τ τ
∗

∗ ∗ ∗ ∗ ∗ ∗
∞ ∞ ∆ ∞ ∞
 

+ ∆ = −  
 

,  (8) 

( )

2
0

III 0

III III 1 0

, ,
4 2, , ( , , )

2 Y

lK l
l LK l K l

G L

τ
τ τ χ γ γ

π π τ

∗
∞ ∞∗ ∗

∗ ∗ ∗ ∗ ∗
∞ ∞ ∆ ∞

  
     ∆   + ∆ = −          
 

. (9) 

Draw attention to the fact that the initial crack length 0l  enters into equation (9). Since the quasi-brittle 

approximation is studied, then this length 0l  is substituted by the model crack length l∗ , taking into 

consideration the inequality 0/ 1l∗∆  . After transformation, we get the system of equations 

2 2 2 2 1s r
l lY Y
r r l

τ τ
π

∗ ∗ ∗
∗ ∗
∞ ∞∗

∆
− = − ,   (10) 

( ) 2
1 0

2 2 2 ( )Y
s sY Y

G l l
τ τ χ γ γ τ

π

∗ ∗
∗ ∗
∞ ∞∗ ∗

 ∆ ∆ − = −
  

.  (11) 

Here / Yτ τ τ∗ ∗
∞ ∞=  are critical dimensionless stresses in a band via the sufficient fracture criterion. After 

opening square brackets in the left-hand side of equation (11), the term with the factor / l∗ ∗∆  appears, 

which can be dropped as a value of the higher order of infinitesimals in comparison with / l∗ ∗∆  in 
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virtue of the inequality 0/ 1l∗∆  . As a result, only terms with factors / l∗ ∗∆  remain in the system 
of equations (10) and (11). After solving the obtained system of equations, taking into account the 
equality 0/Y Gτ γ= , we find analytical expressions of dimensionless critical stresses τ ∗

∞  and the 

dimensionless length / l∗ ∗ ∗∆ = ∆  of the pre-fracture zone: 
1

III
21 2r sY Y lτ χγ
π

−
∗ ∗
∞

  = + −    
,   (12) 

( )2III
1
2 sYχγ τ∗ ∗

∞∆ =     (13) 

Here /l l r∗ ∗ ∗=  is the critical dimensionless crack length, ( )III 1 0 0/γ γ γ γ= −  is the parameter 
characterizing plasticity margin in longitudinal shear. There is the restriction III2χγ π< , wherein the 
quasi-brittle fracture exists under condition of the low-scale yielding of a homogeneous material in the 
pre-fracture zone. 

Within the limit for 1 0γ γ→  the following formula, corresponding to the sufficient fracture criterion, 
can be derived from relation (13) 

( ) 1
0

02r sY Y lτ
−

∞ = + .   (14) 

Here 0 0 / Yτ τ τ∞ ∞=  is the dimensionless load via the sufficient criterion and 0 0 0/l l r=  is the 
dimensionless crack length. Relation (14) describes brittle fracture of materials. It is obvious that

0τ τ ∗
∞ ∞<  for 0l l∗< . 

If the critical SIF IIIcK  and the classical ( )τ γ−  diagram (more precisely its approximation) are 

obtained in two laboratory experiments, then, using three parameters 0 III, ,Yr τ χγ or III, ,Yr τ χγ∗  it is 

possible to construct two critical curves ( )0 0
0 0,l Lτ τ∞ ∞= and ( )*,l Lτ τ∗ ∗ ∗

∞ ∞=  within the wide range of 

variation in crack lengths. These curves depend on the crack lengths 0l , l ∗  as well as on the width of a 

band 0 0/L L r=  and /L L r∗ ∗= . Let the plane ( )0
0 ,l τ∞  be compatible with the plane ( ),l τ∗ ∗

∞ . On the 

combined plane “crack length versus stresses” ( ),l τ∞ , where /l l r=  and / Yτ τ τ∞ ∞= , we construct 
diagrams of quasi-brittle fracture for the specimen type being considered. The critical curves on the 
plane ( ),l τ∞  depend on the relation /L L r= . Let the load intensity τ∞ . be given. Then the diagram 

of the quasi-brittle fracture allows one to estimate the state of a solid with a crack. Two critical curves 
0τ∞  and τ ∗

∞  divide the plane ( ),l τ∞  into three subareas: the subarea 0τ τ∞ ∞< , where there is no fracture; 

; the subarea 0τ τ τ ∗
∞ ∞ ∞< < , where damage accumulation takes place in material of the pre-fracture zone; 

the subarea τ τ ∗
∞ ∞> , where the specimen falls under monotonic loading. 

Figure 3 demonstrates the dimensionless critical stresses ( )0 0
0 0,l Lτ τ∞ ∞=  (curves 1 – 5) and 

( )*,l Lτ τ∗ ∗ ∗
∞ ∞=  (curves 1’ – 5’) for specimens with a sharp crack in the log-log coordinates When the 

concrete implementation of calculation was conducted, the parameters 0 200, 400, 800,1600,L = ∞  for 

curves 1, 2, 3, 4, 5 and * 200, 400, 800,1600,L = ∞  for curves 1’, 2’, 3’, 4’, 5’, respectively, were chosen. 



Polar Mechanics 2018

IOP Conf. Series: Earth and Environmental Science 193 (2018) 012038

IOP Publishing

doi:10.1088/1755-1315/193/1/012038

6

 
 
 
 
 
 

The pairs of curves 1 – 1’, 2 – 2’, 3 – 3’, 4 – 4’ and 5 – 5’ are diagrams of quasi-brittle fracture for the 
type of a studied specimen manufactured from a homogeneous material.  

 
Figure 3. Diagrams of quasi-brittle fracture. 

3.  Conclusion 
The quasi-brittle fracture diagram of an edge crack of the longitudinal shear in a band of the finite width 
was constructed in the plane “load versus crack length”. The diagram consists of two curves, which 
divide the plane into domains. In the first domain, there is no fracture. Damage accumulation under 
repeated loading occurs in the second domain. Finally, fragmentation of the specimen under monotonic 
loading occurs in the third domain. The constants for the analytical description of the fracture diagrams 
of quasi-brittle materials with cracks were chosen making use of the approximation of the classical 
stress–strain diagram for the original material and the critical stress intensity factor. The derived 
structural relations (12) – (14) may be useful for prediction of a critical fracture loading and estimation 
of the pre-fracture zone length when specimens are loaded with respect to the mode III (antiplane strain 
loading) in structured materials. These relations express the value of critical loading and the length of a 
pre-fracture zone in terms of the crack length making use of the following four parameters: r  is the 
characteristic linear parameter of material structure, 0γ  and 1γ  are parameters of the stress-strain 
diagram, χ  is the correction coefficient. The first three parameters are found as a result of a laboratory 
experiment, and the last parameter is found during computer simulation. 
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