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Abstract. The approach to the problem of hydraulic fracturing design optimization is
proposed which combines three modules: a fracture geometry module, an oil production
module and an economic module. The approach is based on the genetic algorithm — the
universal multivariate and multiobjective optimization method. The optimization process
involves subsequent determination of the fracture geometry, calculation of the oil production
depending on the number of fractures, and description of the investment–return cash flows.
Iterated by the genetic algorithm for different set of input parameters, this approach allows
determination of the optimal design of a multiply fractured well for a given set of geological
and economical information. The results show that the proposed method is plausible and can
be useful for achieving projected objectives.

1. Introduction
One of the most efficient methods for enhancement of oil recovery is the hydraulic fracturing of
reservoirs. Modern technologies imply creation of multiply fractured horizontal wells (MFHW)
in low-permeable reservoirs. In light of the high cost of this method, the problem of optimization
of the MFHW design is of great interest.

It is necessary to distinguish between physical optimization, when the criterion of success is to
achieve the maximum production rate, and the economic one — when the maximum production
should be reached under certain economic constraints, for example, the limitations to the total
costs of the hydraulic fracturing jobs.

The concept of the Unified Fracture Design (UFD) is proposed in [1], where the size of the
fracture is determined by the proppant mass pumped into the reservoir. A linear relationship
is assumed between the well flow rate and the pressure drawdown, whereas the proportionality
coefficient is called the Productivity Index (PI). It was found that for any proppant mass pumped
into the reservoir, there is a unique fracture geometry corresponding to the maximum PI. All
other combinations of lengths and widths of the fracture would result in lower PI values. This
is called the physical optimization [1]. In [2], an advanced model describing the fracture width
profile was added to the physical optimization. This addition has improved the accuracy of the
net pressure and the fracture geometry calculation.

The procedure linking physical and economic optimization for a gas reservoir is offered in [3].
This optimization algorithm can be summarized as follows: for the fixed proppant mass, authors



Polar Mechanics 2018

IOP Conf. Series: Earth and Environmental Science 193 (2018) 012011

IOP Publishing

doi:10.1088/1755-1315/193/1/012011

2

are looking for the fracture geometry (length and propped width) providing the maximum of
PI. Then, by variation of the proppant mass, authors select the fracture giving the maximum
of the Net Present Value (NPV). However, it remains unclear, how to determine the fracturing
job schedule that would lead to the desired fracturing geometry.

In this article, a different approach is considered: for a given set of fracturing parameters, we
use a two-dimensional fracture propagation model for predicting fracture geometry. Then, we
couple the geometry with a productivity module to predict the MFHW flow rate. And finally,
we use the economic module for computation of NPV. The optimization is performed by the
Genetic Algorithm (GA) — Non-dominated Sorting Genetic Algorithm-II (NSGA-II) proposed
in [4].

The problem close to our is considered in [5, 6], where authors reduce the multi-objectives
optimization problem to single-objective one.

2. The optimization algorithm
Formally, any optimization problem can be stated as: find values of parameters x1, . . . , xn to
maximize or minimize objective functions

(f1(x), ..., fk(x)), x = (x1, . . . , xn), (1)

subject to bounds
x : xL,i 6 xi 6 xU,i.

Here x represents the vector of free optimization parameters; xL,i, xU,i are lower and upper
bounds; n is the number of free optimization parameters. We will consider only minimization
problem. Maximization of a function f(x) can be achieved by minimizing −f(x).

In the article, the real–coded GA consisting in the direct representation of the actual values
of variables is used. The optimization procedure starts with generating the initial population
in a random way by using the uniform distribution in each variable. Each set of optimization
parameters is named as the individual. The size of the population is N .

It is said that individual x1 is better than x2 for the i–th objective function if fi(x1) < fi(x2).
It is said that the individual x1 dominates individual x2 by Pareto, if x1 is not worse than x2
by all objective functions and at least by one criterion is better than x2. On the other hand, if
x1 is better than x2 for one criterion and x2 is better than x1 for another one, then it is said
that individuals x1 and x2 are non–dominant. The set of non–dominant individuals is called
Pareto optimal set or Pareto front.

Since in general case, it is impossible to find x minimizing all objective functions
simultaneously, the solution of multiobjective optimization problem is the Pareto front.

Once the initial population is created the population is sorted on the non-domination
criterion. The non–dominant set in the current population is called the first front, whereas
individuals in it become the unit rank value. Individuals in the second front being dominated
by the individuals of the first front only, are assigned the rank value of 2 and so on. In addition
to the rank, a crowding distance [7] is calculated for each individual. The crowding distance is a
measure of how close an individual is to its neighbours. Large average crowding distance results
in better diversity in the population.

“Parents” are selected from the population by using binary tournament selection on the base
of the rank and the crowding distance. An individual is selected if its rank is smaller than the
other or if the crowding distance is greater than the other. The selected “parents” generate
“children” by the crossingover and mutation operators. In this article, we use the arithmetical
crossingover and the mutation of a polynomial type [8].

After the operations of crossingover and mutation, an intermediate population of size 2N
is created by gathering the “parent” and “child” populations. The joint population is sorted
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again based on the rank value and the crowding distance, and the new “parent” population is
obtained by keeping N best individuals.

3. Problem definition
The problem of hydraulic fracture optimization can be formulated as follows. For a given
reservoir one must select a set of fracturing parameters, such as the viscosity of fracturing fluids,
the injection rate of the fluid, the injection time and the proppant concentration, such that a
hydraulic fracture geometry (propped width, length and permeability) is obtained to provide
the design objectives: maximum of cumulative well production (Qtot) and Net Present Value
(NPV ) at minimum treatment costs (CHF ):

Qtot → max, NPV → max, CHF → min . (2)

In practice, the most valuable customer information is the proppant mass required for the
hydraulic fracturing [1, 3], therefore, we choose

(i) Mp (proppant mass for single fracturing) and

(ii) Nf (number of fractures)

as free optimization parameters under the following bound constraints:

(i) 4000 [kg] ≤Mp ≤ 20000 [kg],

(ii) 3 ≤ Nf ≤ 10.

The injection rate qi, the proppant concentration Cp (Cp is the volume concentration) and
the effective viscosity of the fracturing fluid µ0 are considered to be given. By the proppant
concentration we mean an average value for the whole injection process.

To calculate the objective functions, it is necessary to include the hydraulic fracture model for
obtaining fracture geometry, the post fracturing production model and the economical model.

3.1. Fracture geometry
The fracture geometry is defined by length, width and permeability of a fracture. The height
of fracture is assumed to be equal the height of the reservoir. Concerning the properties of
the reservoir, standard assumptions of the linear theory are made and the proppant slurry is
considered as Newtonian fluid with an effective viscosity defined by the rheological parameters.
In this paper, the Khristianovich – Girtsma – de Klerk (KGD) model with Carter’s equation
for fluid leak–off, is used to predict the fracture geometry. In [9] a fast algorithm for calculating
the fracture parameters is proposed. In order to apply this algorithm it is necessary to define
the injection time ti and the viscosity of proppant slurry µf .

If the injection rate is constant, the time required to pump a given proppant mass with a
given concentration of the slurry is calculated as

ti =
Mp

ρp(1−mp)qiCp
, (3)

where ρp is the proppant density, and mp is the proppant pack porosity.
Once the injection time is determined, the total volume of the injected slurry is found:

Vi = qi · ti.
Using the proppant mass and the proppant volume concentration, we obtain the volume of

“pure” fluid as

VF =
Mp

ρp(1−mp)
· (1− Cp)

Cp
= Vi · (1− Cp).
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The viscosity of the proppant slurry is determined by the viscosity of the carrier fluid and
the proppant concentration [10]:

µf (Cp) = µ0

(
1− Cp

Cp∗

)−2.5
, (4)

where Cp∗ is the maximum of the proppant concentration. Note, that formula (4) holds at
concentrations Cp ≤ 0.5.

Following [9], we find the fracture parameters: the fracture half-length; the fracture width
and the fluid efficiency η. The latter is determined as the ratio of the fracture volume VFrac to
the volume of the total injected slurry Vi (η = VFrac/Vi).

The proppant concentration in the propped fracture is considered to be equal to the maximum
value, hence, the propped width of fracture is wF = (wCp)/(ηCp∗).

3.2. Calculation of the post-fracture production rate
We consider a single-phase fluid flow in a rectangular reservoir Ω with a fractured horizontal
well located in the centre of the reservoir. The fractures are assumed to be identical and placed
uniformly and symmetrically along the well.

The express assessment of the production rate of the horizontal well with multiple fractures
is proposed in [11]. According to [11], the flow rate Q is a sum of inflows of internal Qin and
external Qd fractures:

Qin =
2kHL

bµn(R− l)

(
pp −

p0
2

(
1 + 2a

1 + a

)
− pz

2

(
1

1 + a

))
, (5)

Qd =
4kHl(pp − pz)
bµn(R− l)

, (6)

Q = Qin +Qd. (7)

Here k is the reservoir permeability, H is the reservoir height, L is the well length, b is the oil
volumetric factor, µn is the viscosity of oil, R is the drainage radius, l is the fracture half-length,
pp is the reservoir pressure, pz is the bottomhole pressure and p0 is some intermediate pressure.

The parameter a is determined as:

a =
2(k/kf )l2

wL
(Nf − 1) =

2l(Nf − 1)

LFcd
. (8)

Here w is the fracture width, kf is the permeability of the propped fracture, Nf is the number
of fractures, Fcd = (kfw)/(kl) is the dimensionless fracture conductivity.

The intermediate pressure p0 is defined as:

p0 =
pp(1 + a)− (0.5− b̄)pz

0.5 + b̄+ a
, b̄ =

4(Nf − 1)2l(R− l)
L2

. (9)

Considering Q as the initial production rate, we assume that the post–fracture production
rate declines exponentially [12]:

Qt = Qe−αt, (10)

where t is time, Qt is the production rate in time t, α is an empirical decline rate.
The cumulative production Qtot to the time t is given by: Qtot =

∫
Qtdt =

∫
Qt exp(−αt)dt =

(Q−Qt)/α. The cumulative yearly production Np,t for the t–year is Np,t = (Qt−1 −Qt)/α.
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3.3. Economic criteria
The economic criterion NPV, commonly used for estimating the hydraulic fracturing efficiency,
is calculated as follows [3, 13]:

NPV =

Tmax∑
t=1

Πt −At
(1 +D)t

− CHF . (11)

Here Tmax is the number of years for which a revenue is calculated, t is the current year, Πt is
the cash inflow at t-th year, At is current expenses, D is the discount rate, CHF is the cost of
hydraulic fracturing with Nf fractures.

The cash inflow Πt in the t–th year is obtained as the product of the cumulative oil production
Np,t and an average oil price. We propose to estimate the fracturing cost CHF as follows:

CHF = Nf (FC + Prp ·Mp + VF · PrF ) +AC, (12)

where Mp is the proppant mass [kg], Prp is the proppant price [$/kg], PrF is the fluid price
[$/m3], VF is the volume of the fluid [m3], Nf is the number of fractures, FC is the cost of
equipment, e.g. pumping [$], AC is the fixed and miscellaneous costs [$].

Current expenses At include operational costs, taxes, costs of oil treatment and
transportation. The treatment and transportation costs are proportional to the volume of the
oil produced and can be included into the oil price, the taxes are proportional to the revenue of
the t-th year, operational costs do not depend on the volume of the oil produced, so we consider
them to be constant.

4. Examples and results
A horizontal well located in the centre of the oil reservoir is used to illustrate an application of
the proposed approach. Multi–objective optimization problem for three objective functions

−Qtot → min,−NPV → min, CHF → min

is solved. We use a population of size 100 and run NSGA II for the 100 generations. The
parameters characterizing the reservoir and wellbore properties are presented in Table 1,
which also contains fracture mechanics data for obtaining the fracture geometry. The fracture
permeability is assumed to be determined only by the proppant pack. The economic data are
taken as follows : the oil price is 80 [$/m3]; the carrier fluid price is 80 [$/m3]; the proppant price
is 2.2 [$/kg]; the discount rate D is 0.2; taxes are 0.24; fixed costs are AC=10000 [$]; equipment
costs are FC = 1000 [$]. The oil price includes the oil treatment and transportation costs. We
calculate the NPV and the cumulative production for 3 and 5 years and for various reservoir
permeability k = 1 mD and k = 10 mD. It is clear that the NPV depends on the cumulative
production but the dependence is non-linear.

Figure 1 shows Pareto front of 100-th generation for reservoir permeability k = 1 mD. It
represents the dependencies of NPV and cumulative production on fracturing costs.

As one can see, the maximum of NPV does not coincide with the maximum of cumulative
production. Figure 2 shows parameters of fracturing design providing the NPV values close to
the maximum and the total inflow values close to the maximum. In order to receive high NPV,
the number of fractures from 6 to 9 and lengths up to 100m should be taken. The larger the
number of fractures one takes, the smaller should be their length. On the contrary, to obtain the
maximum of the cumulative production, one should take the fractures with lengths from 120 to
140 m independently on the number of fractures. Pareto fronts for various Tmax and reservoir
permeability k = 1mD are presented in Figure 3. It can be seen that the NPV values do not
differ much, but the total inflows do.
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Figure 1. Pareto front for reservoir
permeability k = 1 mD.

Figure 2. Parameters plane.

Table 1. Reservoir and well parameters.

Parameter Value Parameter Value

reservoir height H = 20 [m] oil volumetric factor b =1.189
oil viscosity µn = 2 · 10−3 [Pa s] drainage radius R =400[m]
fracture permeability kf = 30 [D] bottomhole pressure pz = 5 [MPa]
well length L =600 [m] reservoir pressure pp = 15[MPa]
annual decline rate αa = 0.587[year−1] Poisson ratio ν =0.25
leak-off coefficient Cl = 10−5 [m/s0.5] Young’s modulus E = 3.5 · 1010[Pa]
fracture toughness KI = 3 · 106 [Pa m0.5] proppant density ρp = 2645 [kg/m3]
proppant concentration Cp=0.3 injection rate qi = 1 [m3/s]
maximum proppant fracturing fluid
concentration Cp∗=0.65 viscosity µ0 = 0.1 [Pa s]

(a) (b)

Figure 3. Pareto fronts NPV (a) and total inflow (b) for various values of Tmax and k = 1mD.

Pareto front for the reservoir with higher permeability k = 10mD is shown in Figure 4. For
this case, the dependence of NPV on cumulative production is almost linear. It means that the
fracture geometry providing the maximum of NPV at the same time provides the maximum of
cumulative production. Pareto fronts for various Tmax are presented in Figure 5.
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Figure 4. Pareto front for the reservoir
permeability k = 10mD.

Figure 5. Pareto fronts for various values
Tmax and k = 10mD.

5. Conclusion
The approach to determine an optimization design of a multiply-fractured horizontal well is
proposed. The numerical tests demonstrate reasonable results on a synthetic set of variables
close to real. Although the results are qualitative, they are useful for hydraulic fracturing design
and for choosing wells best suited for the fracturing.
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