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Abstract. Simple description of the temperature field in soils during their freezing or thawing 

is considered with the help of solutions of Stefan problems. A mathematical model is based on 

the equations of thermal conductivity for the frozen and thawed layers. In the vertical structure 

of the permafrost zone, three layers are distinguished: thawed soil, frozen soil, snow. A 

simplified numerical algorithm for solving one-dimensional (in the vertical direction) thermal 

conductivity problems with moving phase transition boundaries with the formation of new and 

cancellation of existing layers is proposed. 

 

1.  Introduction 

In connection with the change in global temperature the response of permafrost to climate change is 

interested. Both the thickness of a layer of thawed soil and the duration of its existence are increased 

by the climate warming. There is extensive literature on the mathematical modeling of permafrost 

(see [1-7]). In this paper  the  small scale numerical model is proposed for description vertical 

temperature distribution in thawed and frozen layers  taking into account the formation of new and 

revocation of the existing layers (proposed in [8] for swamp-lake landscapes). Since the vertical 

temperature gradients are usually larger than the horizontal one all physical process are assumed one-

dimensional in the vertical direction in the description of the heat transfer.  We distinguish the 

following layers in the vertical direction: the snow, thawed soil, frozen soil. The theoretical 

description of the temperature field in soils during their freezing and thawing is carried out using 

solutions of Stefan problem. A mathematical model based on the equations of thermal conductivity for 

frozen and thawed areas. At the borders of phase transition (freezing-thawing) the conditions of 

equality of temperatures to the phase transition temperature and the Stefan condition are used. The 

formulated mathematical model of vertical temperature distributions in thawed and frozen layers takes 

into account the formation of new and cancellation of existing layers.  

There are various options for the location of frozen and thawed layers. When switching from one 

variant to another the layers are added or deleted. Five options are considered (table 1). The conditions 

of switching from one option to another are determined. Figure 1 illustrates a vertical structure for 

variants 3 and 4. 

 

 

 

Table 1. Variants of the location for frozen and thawed soil. 

Variant Snow Frozen soil Thawed Frozen Thawed Frozen Thawed 
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Figure 1. Variants 3 (a) and 4 (b). 

   

 

2.  Mathematical model of dynamics of freezing and thawing of permafrost 

The vertical temperature distribution in every layer are determined by solving the heat equation, 

satisfying the appropriate boundary conditions: 

    

2

2
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i
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t z

 
=

 
     (1) 

Here ( , )iT t z  is a temperature of i-th layer 1i ih z h−   ), Кi is a thermal diffusivity, t is time,  z is  a 

vertical coordinate (downward). 

Boundary conditions. 

The condition on the boundary of the atmosphere–soil in summer (z=0): 
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  ,     (2) 

the condition on the boundary of the atmosphere-snow (z=0): the snow temperature is set  

    snT T=
.      (3) 

The condition on the boundary of a snow and frozen ground (z=0):  

   1i iT T += ,            

1i i
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z z
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On moving boundaries of phase transition (
iz h= ) 
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, if the i-th layer is frost and the (i+1)-th is thawed one,      (5) 
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, if the i-th layer is thawed and the (i+1)-th is frost one.  (51) 

Here w  is water density, wc  is the specific heat capacity of water, nF  is the total heat flow on the 

boundary  of the atmosphere-ground, sT  is temperature on soil surface, iz h=  is coordinate of the 

boundary between  i-th and  (i+1)-th layers,   is coefficient of heat conductivity,  phT  is phase 

transition temperature, i  is density of  i-th layer,  i w V iL L W=   is volumetric latent  heat of melting 

environment  in i – th layer, 1( )V i wi iW −=    is soil humidity in i-th layer, wi  is the volume of 

water in the soil, i  is the volume of the soi, 310V i iW W−= ,  Wi  (mm/m) – is soil humidity.  

The initial conditions: 
0 0(0, ) ,                .i i i iT z T  = =   

 

Parameterization of heat flow through the underlying surface.  

Heat flows are important parameters that affect soil temperature. The total heat flow Fn is defining by 

known formulas [9,10]: 

(1 ) ( )n I ef t evF F F F F= − − + +
, 

where  Fef  is effective long-wave radiation, Fev is heat transfer by evaporation, Ft  is convective heat 

exchange, FI  is the incoming short wave radiation.  

Short-wave radiation is calculated by the formula [11] 
20.94 ( )(1 0.65 )I cF Q h n=  −

, 

where 

 

2

2

0.9 0.4sin sin
( ) 0.66 0.34

0.1 0.4sin (sin 0.107)

c n c
c

c c

h h
Q h

h h

 



 − +
= + 

+ +  , 

 
1 1arcsin sin sin cos cos cos ( )

12
c k k nh t t


   

  
= + −  

   , 

 
1

2 2
=0.4+23.4 cos( ( +192))-0.4 cos( ( -192))

365 365
d d

 
  

,  

n=1.11÷1.23 depending on the humidity content of the atmosphere, n is total cloud score in fractions 

of a unit, h c is height of the sun in degrees,  is air density,  = 0.94,    k is latitude in degrees, t = 

0,1,…,23  is the local astronomical time; t n=12 is the noon local time; 1 is the sun declination, d is the 

ordinal day number since the beginning of the year.  

The semi-empirical formula was used to calculate the effective radiation of the Fef   [9,10]: 
0 3(1 0.79 ) 3.8 ( 273.15) ( )ef ef a s aF F n T T T= − + + − , 

0 40.95 ( 273.15) (0.39 0.058 )ef sF T e= + − . 
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Here Та  is the surface air temperature (оС), Тs is the temperature of the underlying surface (оС),   n is 

total cloud score (fractions of a unit), 85.67 10 −=   is the Stefan-Boltzmann constant 

(W/(m2 degree4 )), е is the water vapor pressure in the atmosphere (in milibar).   

Turbulent exchange between the underlying surface and the atmosphere is determined by the 

formula [9,10] 

( )t а а s aF с D T T= − , 

where a  is the air density, ac is the specific heat of air,  D =0.0063 is the external diffusion 

coefficient (m/s). 

Evaporation E (mm/m) is calculated by the formula [9,10] 

0 0

0 0

0

         ,

    ,

E for W W

E W
E for W W

W




= 




 

here  W  (mm/m) is the ground (soil) moisture, the critical soil moisture content W0 is assumed equal 

to 200 mm/m. The evaporability of Е0 is determined by the [9,10]  

0 0( )аE D e e= − , 

е0  - the saturating water-vapour pressure  near the earth's surface is found by the Magnus formula 

0

17.57
6.11 exp

241.9

s

s

T
e

T

 
=   

+ 
. 

To determine the moisture content of the top layer of soil, a method based on the solution of the 

moisture balance equation is used [9,10]: 

    
T

dW
r f E

d t
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,    (6) 

2 2

2 0 0
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0 0

0

1 1 1      for ,

     for ,

E EW
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f
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W

      − − + −     
      = 

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

 

where  r  is is  rainfall (mm/h),  f is the water runoff (mm/h), T  is the thickness of the upper melt 

layer of soil (m), m0 = 0.2. 

Heat expenditure on evaporation Fи is calculated by the ratio 

ev evF L E= , 

where  Lev  = 600 (kcal / kg) is  latent heat of evaporation. 

The snow cover is an important factor of interaction in a system of the atmosphere and underlying 

surface. One of the main parameters of the snow cover, which determines the heat-shielding 

properties, is the coefficient of the snow thermal conductivity ( sn ).The dependence of the coefficient 

of snow thermal conductivity on its density ( sn ) can be estimated by the Abels formula 

20.0068sn sn =   (cal (cm s degree)-1). 

The influence of snow on soil freezing was estimated by using the quasi-stationary approximation 

for the two layers of snow with different densities and thermal conductivity. On the border 

atmosphere-snow set snow temperature equals to air temperature; at the boundary of snow layers the 

conditions of continuity of temperature and heat flow are fulfilled. It is assumed that the temperature 

in the frozen soil layer ( 2

frT ) is known  (z=z*). To calculate the temperature of the soil on the border 

of snow – soil, the formula is obtained: 
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where Та is the air temperature, 1 2,sn sn   - snow thermal conductivity coefficients in layers 1 and 2, 

respectively;  1 2,sn sn   are the the thickness of the layers 1 and 2, fr  is the thermal conductivity 

coefficient of frozen soil.  

Snow melting begins when the temperature of the snow rises to zero in the spring. The expenses of 

heat for melting snow with thickness sn  is 80sn sn snF  =   (cal/cm2). Heat exchange at the snow – 

atmosphere boundary is  ( )a sn sn aF T T− = − , heat transfer on the border of a snow – frozen ground is 

1

20.5 ( )( )fr

sn fr fr sn frF T T  −

− =  − , 0.5

26.44 ( 0.3)W =  +  in cal/(cm2s), 2W  is the wind speed. The time 

spent on the snow melting is determined by the ratio of   1( )sn sn a sn sn frF F F −

− −=  − . 

3.  Numerical algorithm 

It is assumed that the transition of moisture in the soil from the frozen state to the melt and vice versa 

does not change the overall moisture content. The numerical solution of the equation (6) has the form 
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Where  fr  is the thickness of adjacent layer of frozen soil, frW  is  moisture reserves of frozen soil.  

Consider an arbitrary i-th layer: 1i i ih z h−   , 1i i ih h −= − , where  i  is the thickness of  i-th layer. 

We introduce new independent variables ( , )t  : 

t t= , 
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then equation (1) and boundary conditions (2) – (5) written as 
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Let us consider the solution of the formulated problems on coarse (three-point) grid for each of layers:  

1 2 30, 0.5, 1.i i i  = = =  

We approximate the equation (7) using the implicit difference scheme and and directional 

differences for the convective terms. Grid equations corresponding to the differential equation (7) for 

i–th layer are of the form: 
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here t  is time step, 1n nt t t+ = +  , 
1

, 1( , )n

i k i n ikT T t +

+= . 

Boundary conditions (8) – (10) for  the difference grid are represented as:  

on the border of the atmosphere – soil 

   
,1 ,2 ,12 2

8 8 4
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 ,  (12) 

on the border of the atmosphere - snow+soil  

     ,1i snT T= ,     (13) 

at the borders of phase transition iz h=  

    ,3 1,1i i phT T T+= =      (14) 
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.    (15) 

If  i becomes less than a predetermined small value     (i  <   ), the corresponding layer will be 

cancelled.  If due to melting or freezing  a new k–th layer is formed, the initial thickness 0

k =  and 

temperatures are set for this layer. 

The following algorithm is used for the   obtained tasks. If all parameters (temperature distributions 

in layers under study and  the positions of phase transition) are known on  n-th time step, then a 

finding the unknown parameters at time tn+1  is performed in two stages: 

The first step is to define the temperature distribution in the selected layers (taking into account the 

relations (11) – (14) by solution of systems of linear algebraic equations of small dimension. 

In the second phase it is clarified the position of the phase boundary by  the numerical solution of 

equation (15). 

4.  Calculations examples 

Calculations were performed for a permafrost soil using weather data of 2010-2012 years for the 

weather station Dudinka (69024' North latitude). 2010 year could be considered  as "cold" (about 240 

days with mean daily negative temperature, the average temperature for the period from 1 October to 

30 April was -20.72oC); 2011 – "warm" (190 days with mean daily negative temperature and the 

average temperature for  October to  April was -15.22oC). The depth of seasonal thawing of 

permafrost soils, the temperature of the melt and frozen layers, the time intervals of the existence for 

layer of thawed soil were determined. Figure 2 shows the calculated boundaries of thawing-freezing of 

the soil. 
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Table 2. The thickness of the layer of thawing frozen soil (cm) and the time of its existence  

year thickness time existence 

2010 г.   99.87   4.06.10 – 7.12.10 

2011 г. 138.4 22.04.11 – 15.02.11 

2012 г. 136.5 21.04.12 – 

 

 

Figure 2. Dynamics of soil thawing-freezing. 

 

Thus, a relatively simple one-dimensional model can be used to assess the current state and forecast 

of permafrost in the land regions. 
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