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Abstract. Satellite images of Hinadkaban Bay, in Surigao Provinces, Philippines have 

indicated quite extensive siltation. Apparently, hilltop mining operations and other 

anthropogenic activities have resulted to deposition of suspended solids into the stretch of 

Hinadkaban Bay. In this regard, a multidisciplinary team was dispensed to undertake study in 

line with determining the environmental conditions along Hinadkaban Bay. Coastal marine 

water samples and surface water samples were obtained in two separate occasions (March and 

October 2012) via grab sampling. It was found that soil erosion in the study area was 

exacerbated by mining operations, road constructions and other anthropogenic activities, with 

heavy siltation often observed in areas near causeways, stockyards or siltation ponds of mine 

companies. Mean total suspended solids data of 5.87 mg/L was obtained for samples collected 

during the dry season while as high as 1000 mg/L TSS was recorded during heavy runoff. 

Meanwhile, average concentration of total nickel in water samples ranged from 0.050 μg/mL 

during dry season to 0.25 g/mL during wet season. On the other hand mean total chromium 

concentration ranged from 0.060 μg/mL (dry season) to 0.30 μg/mL (wet season). Results of 

this study shall contribute to the effort of protecting surface water resources and of optimizing 

their beneficial uses.  

1.  Introduction 

Fluvial transport is one of the modes by which terrestrial components are introduced to oceans. 

Sediments and detrital organic matter from river bodies are dispersed in oceans together with other 

materials from various sources such as erosion and atmospheric dust. The overall water quality of 

coastal areas is directly influenced by the presence of these suspended solids as they bring nutrients 

that could alter many important processes in these systems especially during high run-off [1,2]. For 

instance, metal components of those suspended particles, if present, may partition between the water 

column and the solids. Pathways for toxicity can be anticipated in at least two convenient media, that 

is, in water (via exposure, ingestion, etc.) or in solids (via adsorption). Other environmental issues 

associated with siltation are loss of natural vegetation filters and eutrophication. 

Surigao provinces in the Philippines are rich with mineral heritage, primarily, ferro-alloy metallic 
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commodities namely nickel, iron and chromium. These deposits are found in the provinces of Surigao 

del Norte and northern Surigao del Sur, majority of which are within the Surigao Mineral Reservation 

(SMR). Several large-scale mining companies are operating in this area and because of extensive side 

cut mining operations on hilltops, as well as transport to port areas and consequent loading of nickel 

laterite to barges, induce soil erosions. These activities in the area are thought to heavily contribute to 

the build-up of nickel laterite particles along Hinadkaban Bay.   

Cognizant to the need of developing an integrated coastal management program [3] to achieving 

sustainability in these mine impacted areas, however, there is a need to describe the prevailing coastal 

water quality as well as an assessment of existing mitigating and/or remediation measures and 

programs by mining companies involved. A study was conducted pursuant to the Mines and 

Geosciences Bureau (MGB) Special Order No. 2012-19 dated March 2, 2012. MGB is a government 

agency in the Philippines mandated to regulate mining operations in the Philippines. The study was 

aimed at determining the current environmental conditions along Hinadkaban Bay, with focus on the 

assessment of the extent of siltation in the coastal areas of Surigao del Norte and Surigao del Sur 

provinces in the Philippines and to determine possible causes of siltation and its impact on the coastal 

marine environment of Hinadkaban Bay. Specifically, this study aimed to provide some trends in 

water quality characteristics (physical and chemical) and determined the effects of natural and 

anthropogenic factors on the observed water quality. Further, the study aimed to: 1) investigate and 

identify the current contributions of total suspended solids (TSS) to the Hinadkaban Bay; 2) establish 

spatial and temporal trends in the river loads of suspended solids, of nutrients such as nitrate and other 

chemical properties such as pH, salinity, temperature as well as the heavy metal load (Cr and Ni) as a 

function of varying seasons and 3) estimate suspended solids contribution using relationship between 

river flow rates and TSS concentration to determine the TSS input to Hinadkaban Bay [4].   

 

 

Figure 1. A digital image of the sampling area Hinadkaban Bay. This image 

reflects the catchment or basin covering the scope of this assessment. 

 

This study shall contribute to the body of knowledge as to the contribution of nickel laterite mining 

operations to siltation load contribution along Hinadkaban Bay in Surigao, Philippines. Specifically, 

the individual load contributions of four identified drainage basins located in the study area namely, 

Hinadladan Drainage Basin, Hayanggabon Drainage Basin, Taganito Drainage Basin and Capandan 

Drainage Basin, shown in figure 1, were estimated from results of water quality analysis of samples 

obtained specifically in sampling areas located upstream and downstream of those mine sites operating 

in the area [5]. Moreover, the findings of the study shall also be utilized to initiate effort leading to the 

development of guidelines relevant to coastal water quality criteria such as turbidity and to the design 
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of appropriate coastal water quality monitoring program in mine-impacted areas. 

2.  Materials and methods 

The study area was situated in Claver, Surigao del Norte and Carrascal, Surigao del Sur with 

approximate coordinates between 125° deg. 46” – 125 deg. 58” E and 9 deg. 26” – 9 deg. 34” N. 

Claver is approximately 50 kilometers from Surigao City while Carrascal, Surigao del Sur is about 70 

kilometers. Access to the study area is from Butuan City through a four-hour land trip via Surigao City 

along the National Highway. 

 

 

Figure 2. Site map of the Hinadkaban Bay in Surigao where coastal and river water samples were 

collected in March and October, 2012. 

 

Field survey and sampling were carried out on two occasions: March 6-10 (dry season) and from 

October 22-26, 2012 (wet season) by the multiagency assessment team. The Philippines’ climate is 

characterized by two seasons only: dry (summer) and wet (rainy). Generally, the months of January to 

June cover the dry season while during the months of July to December, Philippines is frequently 

visited by storms and typhoons. It is known that TSS is related to quality and transparency of coastal 

water [4] and is subject to variations with varying seasons. Therefore, it was designed that the 

assessment shall include sampling covering both dry and wet seasons [7]. Sampling areas along the 

Hinadkaban Bay are shown in figure 2. Trace metals were analyzed from the acidified samples while 

the un-acidified samples were subjected to cation and anion analysis including alkalinity, TDS and 

TSS analyses in accordance to standard methods for water analysis. The Environment Management 

Bureau-CARAGA Region (EMB-CARAGA) collected samples for TSS analysis only. It was also the 

EMB group who performed the in-situ analysis using their Horiba Water Quality U-15 unit. The probe 

is capable of providing seven (7) in situ data on: pH, conductivity (mS/cm), turbidity (NTU), dissolved 

oxygen (mg/L), temperature (deg C), salinity (ppt NaCl) and TDS (mg/L). MGB protocol on water 

quality analysis was adopted to ensure reliability of measurements performed.  For each measurement, 

duplicate readings were recorded. Calculations of mean, standard deviation and other statistical 

parameters were performed using MS Excel®. 

During the field survey, documents were reassessed on-site using the aforesaid assessment. 

Interviews/discussions were also conducted with mine company personnel and other representatives. 

The sample collection was limited to two sampling periods only, commencing on March 6-10, 

2012 and this was followed up on October 22-26, 2012. Further, there was no coastal marine water 

samples collected in October, 2012 due to high tidal waves at that time along the Hinadkaban Bay. In 

addition, some areas within the mine facilities cannot be accessed because of slippery slopes and 
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terrain hence, there were limited number of surface water and/or river water samples collected last 

October 2012. Field data presented herein are for the purpose of establishing prevailing patterns and 

any measurement deviations noted can also be partly attributed to uncertainties in measurements 

especially during high runoff which was noted during the October sampling period. Also, it is worth-

mentioning that at the time sampling was conducted in March 2012, there was on-going dredging in 

Hayanggabon River commissioned by a nickel processing plant in compliance with another (separate) 

order from EMB-CARAGA.  Said dredging was completed in October, 2012. 

3.  Results and discussion 
The goal of this scientific undertaking was to collect data and to communicate information about water 

quality in Hinadkaban Bay that could be relevant and useful to support managers’ and/or government 

regulators’ decisions. This paper describes an overview of the role of the water quality team in this 

multidisciplinary undertaking and how water quality assessment was conducted. Although, a monthly 

multipartite monitoring is already in place, the water quality group shall provide scientific information 

to concerned stakeholders to initiate better understanding of the environmental conditions in 

Hinadkaban Bay [8] and to ensure that the water quality in the Bay adheres to both national and local 

standards [9]. Further, results were also compared to baseline data indicated in the Environmental 

Impact Statement (EIS) submitted by each mining company prior to commencing the mining 

operations.  
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Figure 3. Turbidity and TSS levels measured in samples collected along Hinadkaban Bay. 

 

It was found that along the study area, there were sites that were considered in poor condition 

(manifested by visible red-orange water discharges), generally impacted by point source discharges, 

and were often located near the causeways, stockyards or siltation ponds of each mine company. TSS 

and turbidity measured in marine water samples collected in March and in October 2012 were plotted 

against sample location to provide a glimpse of the existing spatio-temporal trends. It can be gleaned 

from figure 3 that TSS and turbidity of water samples collected in October were relatively higher than 

that of measured in samples obtained in March 2012. Results show that the turbidity and TSS readings 

have considerably increased during the month of October. The same observation was noted in the case 

of the Capandan creek. As previously pointed out, October is the time when the Philippines is 

frequented with typhoons. It should be noted also that in contrast to the previous results, TSS and 

turbidity levels were found to decrease in the Hayanggabon area with the completion of the dredging 

of the Hayanggabon River in October 2012.   



The 4th International Conference on Water Resource and Environment (WRE 2018)

IOP Conf. Series: Earth and Environmental Science 191 (2018) 012048

IOP Publishing

doi:10.1088/1755-1315/191/1/012048

5

 

 

 

 

 

 

 

 

Figure 4. TSS levels in river and discharge outlets of siltation 

ponds within the mine facilities. 

 

Such increase in the turbidity and TSS levels measured along the Hinadkaban Bay could possibly 

be attributed to the load contribution of the river bodies and discharges from siltation ponds of each 

mine facility. River delta (Capandan, Taganito, Hayanggabon, Kinalablaban and Tandawa) were 

found to be heavily silted due to wash off from river beds and creeks found within the mine facilities. 

Suspended solids from Capandan creek; Taganito River; Hayanggabon River; Tandawa creek; 

Kinalablaban River and Tugbungan creek directly flow into the Hinadkaban Bay. As such, it was 

presumed that suspended solids that have been transported to the above mentioned river systems came 

from stockpiles of nickel laterite near the Bay, as well as during loading of nickel laterite to barges. It 

was noted that it seems to be a usual practice for mining companies to have several valleys of nickel 

laterite ore stockpiled near the Bay prior to loading. Those activities were aggravated by heavy rainfall 

when runoff is high due to the fact that Surigao area is frequented by typhoons. As shown in figure 4, 

no clear trend as to the TSS data obtained from water samples collected in March 2012. TSS mean 

data (5.87 mg/L) is below the Department Administrative Order (DAO) of the Philippines’ 

Department of Environment and Natural Resources (DENR) DENR DAO-2016-08 (Water Quality 

Guidelines [WQG]) and General Effluent Standards (GES) for Class SC and SD water, 100 and 150 

mg/L, respectively. However, TSS levels measured reached as high as 1000 mg/L in samples obtained 

in October 2012 (wet season). The measured TSS levels were found to be non-compliant with the 

DENR-DAO 2016-08-WQG and GES for class SC and SD coastal marine waters. Further, it was 

found that the values did not also conform to the water quality guidelines in surface waters of Canada, 

the European Union member states and Australia and New Zealand [2]. 

An understanding of the changes in the sediment flux to the Hinadkaban Bay would be important to 

be able to provide for effective mitigating measures for the prevention of the further degradation of the 

coastal water environment. This is because the geochemical components such as heavy metals, some 

nutrients, etc., present in suspended solids may be released into the water body and may cause 

modification in its physical, chemical and biological properties leading to the eventual degradation of 
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the coastal area notwithstanding the potential toxicity of this suspended matter to aquatic life in the 

Hinadkaban Bay.   

Thus, the load contributions of each river system as well as siltation pond discharges to the 

Hinadkaban Bay were determined [10]. It is assumed that the characteristic flow at each basin directly 

affects the amount of sediments that will go into the Hinadkaban Bay. As far as availability of data on 

the sediment load contribution of each river system is concerned, this study was the first to attempt to 

quantify the sediment load contribution coming from tributaries within mine facilities going to 

Hinadkaban Bay. However, the data particularly presented herein to quantify sediment contribution of 

each basin to the Hinadkaban Bay using equations (1) to (5), may be treated only as preliminary and 

needs to be subjected to further validation. The model/equations chosen were not specifically designed 

by the researchers based from prevailing environmental conditions in each basin in the study area. For 

the purpose of illustrating the contributions of these mining operations on the water quality of river 

systems situated in the study area that equations (1) to (5) were adopted from those cited references. 

For example, to get the best fit with reference to equations (1) to (5), river water flow needs to be 

monitored on a daily basis every year, necessary corrections have to be performed such that the 

equations shall reflect any variations relevant to prevailing climatological conditions [11]. It can be 

anticipated that discharges of sediments into the river will be low during the dry season. On the other 

hand, sediment load contribution of the river basin may shoot up during the rainy season.    

To get through the target sediment load contribution per basin, the following information was 

utilized. A mean discharge rate of 3.3 m
3
/s was recorded from 18 sampling sites. Highest volumetric 

discharge, i.e. 25.3 m
3
/s, was recorded at the upstream of the Taganito River, near the siltation pond #4 

of one mining company. The discharge rate at each gauging station was calculated based on the 

respective cross sectional area of each river system and on the recorded flow (in rounds per minute or 

rpm), measured during the actual sampling [12]. The gauging stations were located within and/or in 

proximity to the mine facilities. Meanwhile, the sediment load contribution was estimated from the 

river/pond discharge and TSS concentration data. Specifically, the TSS concentration data from each 

sampling station were correlated with the calculated discharge rate through equation (1): 

TSS = aQ
b
 [13] (1) 

where Q represents the river/pond water discharge, m
3
/s and TSS in mg/L. a and b are constants. A 

modified equation by Campbell and Bander (1940) may be used to establish the influence of fluvial 

flow (Q, m
3
/sec) on TSS load (L, gram/sec), 

L = aQ
b
 [14] (2) 

Results of the estimation analysis suggest that TSS concentration varies non-linearly with discharge. 

That is, elevated TSS concentrations were measured at each station where there was moderate flow 

rate. Also, it was observed that turbidity was found to be low in areas in which there was no heavy 

run-off. This observation supports the normal pattern in river transport [13]. The observed variability 

in the sediment load contribution may be attributed to the presence of point sources only and to some 

extent to factors relating to flow regulations within the river channels. For example, as previously 

emphasized that in the absence of point sources such as where there were no stockpiles near the river 

or absence of any rampant transport and loading activities, TSS levels were found to be at the 

minimum value.  

Given the TSS concentrations and the calculated discharge rate, the mean TSS flux from each river 

system to the Hinadkaban Bay may be calculated using an equation which was derived and modified 

from Dolan et al [15] and then integrating the method adopted by Prego et al [16]. Average flow in all 

stations was also calculated. Using the modified equation (3), the mean TSS flux for each river was 

obtained, 

F = Q [ fm/qm ] (3) 

where F is the average river load of TSS, gram/sec; Q is the mean daily flow, m
3
/sec; fm is the mean 
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load for the day in which TSS was determined, gram/sec and qm is the mean river discharge for the day 

in which TSS was determined, m
3
/sec. In addition, this study has utilized and adopted the equation by 

Dolan et al 1981, as shown in equations (4) and (5):   

1  +  1/n

Sxy

qm fm

1  +  1/n

Sx
2

qm qm

F  =  Q   fm/qm

 

(4) 

𝑆
𝑥𝑦 =  

1
𝑛−1 

(∑ 𝑞𝑖𝑓𝑖− ∑ 𝑛𝑞𝑚𝑓𝑚)
 

𝑆𝑥
2  =   

1

𝑛 − 1
  (∑ 𝑞𝑖

2) −  𝑛𝑞𝑖
2 

(5) 

where F (g/s) – the annual average river load of TSS, Q (m
3
/s) – the mean daily flow for the year, fm 

(g/s) – the mean load for the day of the month on which TSS was determined, qm (m
3
/s) – the mean 

river discharge for the days on which TSS were determined, n – the number of days with TSS 

measurements, qi – the individual measured flows (g/s) determined at each sampling and fi – the 

individual measured load (g/s) determined at each sampling. 

 

Table 1. Drainage Basin Area and calculated TSS load per basin per day (basis: in situ TSS 

measurements performed during the October 2012 sampling).  

River Basin, km
2
 TSS flux, grams/sec-km

2
 

apandan creek 4 29.6 

Taganito River 26.4 4.5 

Hayanggabon River 11.5 10.3 

Kinalablaban River 32.1 3.7 

Tugbungon creek Not available n/a 

Tandawa creek 4.4 26.9 

 

Based on the data generated in the course of this study, a mean TSS load of 157.3 mg/L and a mean 

river discharge of 3.3 m
3
/sec were obtained across the 18 stations sampled. The mean daily flow was 

assumed to be 2.5 m
3
/sec based on the average linear flow multiplied by the average cross sectional 

area of the river system. Calculations yield a mean TSS load of 118.4 gram/sec. This means that under 

typical condition, the river systems take on, an average of 118.4 grams of solids per second. Using this 

mean mass of solids being discharged to river system, the TSS contribution per basin can be calculated 

and estimated. Table 1 gives the drainage basin area and the calculated estimated TSS load per basin.  

Calculated values imply the TSS flux was observed at Capandan creek at 29.6 grams of 

solids/seconds per square kilometers and followed by Tandawa creek with calculated flux of 26.9 

grams/sec-km
2
. Sediment load contribution was found to be relatively higher in those two river 

systems compared with the other river systems.  Kinalablaban River contributed the least in terms of 

TSS flux into the Hinadkaban Bay. 

It was clearly seen from the water quality data that under various extreme conditions such as heavy 

runoff, the chemistry associated with each process also tends to change and at this circumstance that a 

stringent action must be undertaken to averse the foreseen risk posed by siltation along the 

Hinadkaban bay. In anticipation of the potential release of other contaminants such as heavy metals 

present in suspended solids into the water column, total Ni and total Cr in water samples were also 

measured in those samples collected [17]. Average concentration of total Ni in the water samples was 

0.050 μg/mL during dry season while the mean total Cr concentration was 0.060 μg/mL. It was 
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observed that both the amounts of Cr and Ni increased during the wet season, that is, amount of Cr and 

Ni measured were 0.30 and 0.25 μg/mL, respectively. The DENR-DAO-2016-08-WGC and GES  

standard for total Ni and Cr in SC and SD water body classifications are 0.3 and 1.5 g/mL.  Results 

suggest that dilution is not apparent which means that at high runoff, which translates to ravaging, 

quite high volume of water coming into these river systems, the amount of Cr and Ni were found to be 

much higher during rainy season. Correlating the elevated concentration of TSS in the river system, it 

may therefore be concluded that the presence of suspended particulate matter could have directly 

influenced the total metal (Ni and Cr) concentrations in the overlying water. It is rationalized that long 

exposure of the suspended solids in the water column may cause Cr and Ni to partition into the water 

column, paving a convenient route for transport of Cr and Ni into the river system. 

4.  Conclusions and recommendations 

This study has provided information as to the chemical concentrations in coastal marine water and 

surface and river water samples in Surigao provinces. Measured values of TDS, salinity and 

conductivity in coastal marine water samples were generally constant except in some areas where the 

site is situated 100-200 m from the Hinadkaban Bay where saltwater intrusion is possible and/or could 

be effluent waters flowing out of the siltation ponds (mouths of Taganito River, Hayanggabon River 

and  Kinalablaban River). Mean values for TDS, salinity and conductivity for water samples collected 

in March 2012 were 169.5 mg/L, 0.1 ppt NaCl and 0.27 mS/cm, respectively. Study designs directed 

toward status and trends monitoring area are encouraged to be undertaken by a multipartite group, 

members of which will come from various stakeholders. As concerned stakeholders’ management 

decisions will have to consider whether these chemical concentrations would decrease or increase 

upon implementation of proposed mitigating measures or remediation program. Based on the outcome 

of the chemical analysis conducted, the following study designs are suggested: 1) Mining companies 

must include in their environmental program methods [6] to quantify sediment loads (advective and 

dispersive) and modeling of runoff from mine sites on a quarterly basis every year to enable 

monitoring of the sediment flux from the mine site to the coastal area. 2) Chromium and nickel metal 

speciation of suspended particulate matter must be undertaken in order determine the extent of 

partitioning of chromium and nickel in the overlying water. 3) Ecotoxicological studies should be 

performed to determine the biological and chemical impact of the suspended particulate matter on 

aquatic organisms; and 4) Conduct characterization of the suspended particulate matter in terms of 

particle size distribution and chemical composition to further understand the potential risk posed to 

aquatic organisms. 

Further, this study was able to establish the possible sources, pathways, and loadings of sediments 

and other solids in Hinadkaban bay. It was found that the occurrence of lateritic soil/sediments erosion 

due to sparse vegetation cover and rock weathering, gulley erosion, and the prevalence of landslides 

and landslide scars resulted in the transport of silt materials into the Hinadkaban Bay thus contributing 

to the siltation in the coastal waters of the study area. This siltation was evident in the watersheds of 

Taganito, Hayanggabon, Hinadladan and in the Capaguihan and Dahican area. These drainage basins 

contribute to the TSS flux along Hinadkaban Bay. Notwithstanding, the ongoing road construction in 

the vicinity of Hinadkaban Bay. Moreover, results of the study found that Capandan creek (29.6 grams 

sediment/sec per km
2
) contributed the most in terms of TSS flux into the Hinadkaban Bay, followed 

by Tandawa Creek (26.9 grams sediment/sec per km
2
). Further, inefficient mining activities such as 

absence of regular program to desilt those siltation ponds, increased sediment output that exacerbated 

the problem of turbidity and siltation due to river discharge. 
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