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Abstract. The application of fuel cell powered loaders will be an attractive option in the future. 
Compared with passenger cars and commercial vehicles, the operating conditions of loaders 
are complex and varying as the poor working environment, which pose a great challenge to the 
energy management problem of fuel cell hybrid loaders (FCHLs). This paper presents four 
energy management strategies (EMSs) based on dynamic programming, Pontryagin’s 
minimum principle, equivalent consumption minimization strategy, and model predictive 
control for FCHL comprising fuel cell and supercapacitors. The basic principles of the 
proposed approaches are described. Hydrogen consumption, fuel cell durability, and SoC 
maintenance were considered in the cost functions. Simulations are performed in the 
MATLAB environment under representative cycles of a wheel loader. Simulation results 
demonstrate the feasibility and effectiveness of the proposed EMSs.  

1. Introduction 
Loaders are significant and indispensable in construction. Loaders usually have low efficiency, high 
fuel consumption, and bad emissions. Energy usage and emissions have attracted great attention. In 
recent years, a number of construction machinery manufacturers and research institutes have 
introduced some hybrid loaders, which have acceptable energy saving effect [1]. Fuel cells are 
efficient, clean, and green power source with high conversion efficiency and no emissions. The 
application of fuel cell in loaders has attracted increasing interest. In 2000, Wagner Company and 
INCO Company developed a fuel cell underground loader (FCUL) based on EST-6 electric 
underground loader [2]. In 2004, Fuelcell Propulsion Institute and Vehicle Projects LLC started to 
develop fuel cell mining vehicles, Caterpillar introduced a FCUL based on R1300 underground loader 
[3,4]. Studies show that FCUL reduced the total mining cost, and had obvious advantages over 
batteries powered underground loaders [5]. The application of fuel cell hybrid loaders (FCHLs) will be 
an attractive option in the future.  

For various FCVs, the vehicular performances are closely related to energy management. Via 
appropriate energy management strategies (EMSs), the fuel cell hybrid system can improve fuel cell 
performance and durability, system efficiency, and energy utilisation [6]. Generally, the EMSs of 
FCVs can be basically divided into rule based EMSs and optimal EMSs. The former usually includes 
certainty rule based algorithms and fuzzy logic algorithms [7,8]. The latter is based on optimal control 
theories, such as dynamic programming (DP) [9], Pontryagin’s minimum principle (PMP) [10–12], 
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equivalent consumption minimization strategy (ECMS), and model predictive control (MPC) [13]. DP 
requires complete knowledge of the future driving conditions, it has theoretically optimum. However, 
the calculation of DP will be tremendous with the growth of the control horizon. Therefore, DP is 
often realized offline and employed as benchmark. PMP is effective in generating near-optimal results 
that are close to those of DP. ECMS is an instantaneous algorithm, it considers the system fuel 
consumption rate, and the charge and discharge power of the auxiliary power source, then obtains the 
system equivalent fuel consumption. It needs to be pointed out that PMP and ECMS based strategies 
require at least one parameter to be tuned to obtain the optimal results over a specific driving cycles. 
MPC can repeatedly optimize decisions on-line over short and receding future time horizons to 
coordinate the control system, which can achieve good control through rolling optimization [14].  

The energy management of FCHL is quite difficult and challenging. In this study, we will develop 
EMSs for FCHL powered by a fuel cell supercapacitor hybrid system. The paper is organized as 
follows: In Section 2, the system description of FCHL is introduced, and a system model is established. 
Four EMSs are proposed in Section 3. In Section 4, simulation results are presented and discussed. 
Finally, the conclusions are summarized in Section 5. 

2. System Description and System Model 

2.1. System description 
In this study, wheel loaders are utilized to explore the energy management problem of FCHL. The 
electrical structure of the FCHL essentially involves a fuel cell stack (FCS), a supercapacitor pack, and 
electrical motors powered powertrain. The system topology of FCHL is shown in figure 1.  

 
Figure 1. Topology of FCHL. 

2.2. System model 
A system level model is established for the FCHL. The vehicle dynamics is expressed as follows [15]: 

( ) ( )( ) ( )2cos sind A w
dvF m g f K S v v m
dt

θ θ δ= ⋅ ⋅ ⋅ + + ⋅ ⋅ − + ⋅ ⋅                             (1) 

where Fd denotes the vehicle driving force, m denotes the vehicle mass, g denotes the gravitational 
acceleration, f denotes the rolling resistance coefficient, θ denotes the road grade, KA denotes the air 
resistance coefficient, S is the vehicle front area. v and vw denote the vehicle speed and the wind speed, 
δ denotes the conversion factor of the rotating mass. 

The demand power of FCHL consists of driving power of electrical motors. The vehicle demand 
power should be satisfied by FCS net power and supercapacitors output power. 

r eq MHS MD FCS SCP P P P P= + = +                                                             (2) 
where Preq, PFCS, and PSC denote vehicle demand power, FCS net power, and supercapacitors power, 

respectively. PMHS and PMD denotes the demand power of the two motors.  
A static model is established for the electrical motors considering their working efficiency. A 

simplified model based on polarization curves is established for the FCS [16]. The FCS produces extra 
power for the auxiliary systems, and the demand power is also the FCS net power. A dynamic model 
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based on RC model was developed for the supercapacitors [17]. The state of charge (SoC) of 
supercapacitors is an important parameter in vehicle energy management problem, and it is defined as 
the amount of electrical energy left in the supercapacitors. 

3. EMSs development 

3.1. DP based strategy 
DP is a numerical method solving multistage decision-making problems. The amount of calculation of 
DP based algorithms increases exponentially as the horizon extends. In this work, the DP benchmark 
will be implemented offline. Energy management of FCHL will be solved by finding an optimal 
trajectory of FCS net power. Therefore, the control variable of the optimal problem is set as the FCS 
net power, and supercapacitors SoC is set as the state variable.  

Literatures have shown that the operating loads of loaders changes markedly and frequently, and 
has a highly repetitive mode [18]. The load dynamics has a negative effect on FCS durability. 
Restricting the load dynamics can prolong the FCS durability. Therefore, the objective of the optimal 
control problem is to minimize hydrogen consumption while considering the FCS durability. In 
addition, supercapacitors must work within appropriate bounds, avoiding overcharging or 
undercharging. Finally, objective of DP based EMS is shown below. 

       ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2

1 . 2
1 2 0 3

0

N

H FCS
k

J k k m k k SoC k SoC k I kα α α
−

=

 = ⋅ + ⋅ − + ⋅  
         (3) 

where SoC0 is a median SoC value. α1, α2, and α3 are coefficient. IFCS denotes the FCS current, k 
denotes the time step. 

Some necessary constraints must be enforced. For the supercapacitors, the bounds on the SoC 
should be limited as constraints during working. FCS net power is limited to avoid startup problem, 
and its change rate should be limited for better performance. In addition, DP algorithm requires that 
the initial value of SoC is nearly the same as end value. Finally, the constraints are as follows. 

min max

min maxFCS FCS FCS

FCS FCS Rate

Init End

SoC SoC SoC
P P P

P P
SoC SoC

≤ ≤
 ≤ ≤
 Δ ≤
 ≈

                                                            (4) 

where SoCInit and SoCEnd denote initial value and end value of SoC, respectively. SoCmin, SoCmax, 
PFCSmin, and PFCSmax are constant. ΔPFCS denotes the change rate of FCS net power. PFCSRate denotes the 
maximum power-changing rate of the FCS. 

3.2. ECMS based strategy 
ECMS takes the minimum fuel consumption as the objective. It can convert the power of the auxiliary 
power source to equivalent hydrogen consumption in FCV. An equivalent factor is introduced, 
converting the consumed or stored electric energy into the hydrogen consumption. The hydrogen 
consumed by the FCS adds the equivalent hydrogen consumption of electric motors, can be used as an 
instantaneous cost function, which can be expressed by formula (5). 

2

2

.
min SC

H
H

PJ m
Q

β
  = + ⋅ 
  

                                                                       (5) 

where 
2HQ  denotes the calorific value of hydrogen, β is the equivalent factor.  

ECMS will select the optimal control variable minimising the cost function at each time step, and 
allocates the output power of the FCS and supercapacitors. Some necessary constraints must be met, 
as shown in formula (4) excepting the last equation. 
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3.3. PMP based strategy 
PMP can instantaneously provide the necessary conditions for optimal control problems. In PMP 
framework, not only the hydrogen consumption, FCS durability and batteries durability can be 
contained in cost functions to achieve specific objectives. Restricting the load dynamics is positive for 
prolonging the FCS durability, a limitation on the current change rate and heavy current of the FCS is 
introduced [15]. Finally, PMP based EMS for the FCHL is proposed, which minimizes the hydrogen 
consumption, restricts the current change rate and heavy current of the FCS, and maintains SoC within 
allowable bounds. Hamiltonian function of the PMP based strategy is defined as follow. 

( ) ( )
2

. . 2 2
1 0 2 3-H FCS FCSlast FCSH m SoC SoC SoC I I Iλ γ γ γ= + ⋅ + ⋅ + ⋅ − + ⋅                      (6) 

where λ is a co-state variable. γ1, γ2, and γ3 are coefficient. IFCSlast denotes the FCS current at the last 
time step. 

3.4. MPC based strategy 
With prediction of the future process output, MPC can make the control more accurate and optimized. 
An accurate prediction model can effectively improve the predictive control effect of MPC. Markov 
chain and neural networks have been applied to establish the prediction model. In this paper, MPC is 
employed for FCHL with the same objective as that of PMP. A predictive model based on Levenberg-
Marquardt neural network is introduced. The input of neural network is historical demand power, and 
the output is the predicted sequences. Figure2 shows the structure of the proposed MPC. 

 
Figure 2. Structure of the proposed MPC. 

 
where SoCref denotes the SoC reference, Pref denotes the required power of excavator, Pgen denotes 

the generated power of the hybrid system, and mH2 denotes the FCS hydrogen consumption.   

4. Simulations and discussions 
The proposed EMSs are performed in MATLAB environment. The operating load of a wheel loader 
under representative cycles is used as shown in figure 3. The FCHL is equipped with an 80 kW fuel 
cell module and a supercapacitor pack of four 48 V 63 F modules.  
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Figure 3. Operating load of a wheel loader. 

 
Figure 4 and 5 show the simulation results of the FCS net power and supercapacitor SoC. As can 

be observed from figure 4 and 5, the implemented hybrid system can meet the load variations of 
FCHL. Figure 4 shows the simulation results of the FCS net power. The trajectories of the FCS net 
power vary similarly under different EMSs. DP can get the global optimal power trajectory, however, 
it doesn’t limit the power changing rate in cost function, so the power trajectory has dramatic 
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fluctuations. The trajectories of the FCS net power under PMP and ECMS are quite smooth. PMP 
limits the power changing rate, so it has small fluctuations and has a positive effect on prolonging the 
FCS durability. ECMS could obtain a satisfactory control effect only when appropriate control 
parameters are selected. The trajectories of the FCS net power under MPC is not satisfactory. That is 
because MPC has some predictive errors during complex operating load conditions.  
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Figure 4. PFCS net power. 
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Figure 5. Supercapacitor SoC. 

As can be seen in figure 5, the trajectories of the supercapacitor SoC under the four EMSs change 
with the demand power, and the SoC variations were similar. DP and PMP based EMS have smaller 
and more concentrated change range. That is because they limit the supercapacitor SoC in cost 
function. ECMS based EMS has the maximum change range, because it has no limitation. MPC has a 
lower change range, which may be that the prediction is limited and the prediction has some errors. 
The hydrogen consumption under DP, ECMS, PMP, and MPC based EMS is 414.28 g, 411.83 g, 
395.31 g, and 434.41 g respectively. DP and ECMS have good fuel economy. That is because DP can 
obtain the global optimal objective, ECMS can obtain low hydrogen consumption. It should be pointed 
out that PMP gets the optimal hydrogen consumption. It may be that PMP limit the power changing 
rate, the trajectories of the FCS net power are smooth. MPC has the most hydrogen consumption, due 
to the predictive errors during rolling optimization process. 

5. Conclusions 
This paper has presented the energy management problem of FCHL comprising FCS and 
supercapacitors. The topology of a FCHL was presented. Then, a system model was established. Four 
EMSs based on DP, ECMS, PMP, and MPC were proposed for FCHL. To obtain better performance, 
new cost functions were introduced, considering hydrogen consumption, FCS durability, and 
supercapacitors SoC. Simulations were performed on representative driving cycles of a wheel loader. 
The superiority of the proposed EMSs was demonstrated.  
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