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Abstract. In this study, a three-dimensional numerical model has been established and 

validated for microfluidic fuel cell (MFC) with flow-through porous electrodes. Systematically 

parametric analyses are performed to evaluate the effects of electrode aspect ratio on the 

reaction rate distribution in this energy system. Based on the results, the feasibility of 

improving the utilization degree of the porous electrode by alternating the electrode aspect 

ratio is demonstrated and optimized electrode aspect ratio is derived for this energy system. 

Nomenclature 

𝑐0 inlet concentration, mol m−3 

𝑈0 volumetric flow rate, μL min−1 

W electrode width, mm 

L electrode length, mm 

𝑉𝑐𝑒𝑙𝑙 cell voltage, V 

Subscript 

𝑗 species {𝑉2+, 𝑉3+, 𝑉𝑂2+, 𝑉𝑂2
+ and 𝐻+} 

𝑙 electrolyte 

𝑠 electrode 

1.  Introduction  

Increasing power demand in portable electronics is making microfluidic fuel cell (MFC) a promising 

technology. MFC, also known as membraneless laminar flow-based fuel cell, can operate without a 

membrane by using the co-laminar nature of the microscale flows for the fuel-oxidant separation 

purpose [1]. This unique membraneless architecture helps avoid many membrane-related problems, 
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including complex water management, membrane degradation, high cost and so on [2].  

Since the invention of MFC in 2002, a wide array of MFCs has been developed to improve MFC 

implementations [3-5]. Among them, the flow-through type MFC with porous electrodes reported a 

class-leading room temperature peak power density [6]. The high power output was mostly owing to 

the high surface-to-volume ratio of the porous electrodes which enlarged the reaction interfaces 

greatly. With the rapid increase of the interest in MFC, a number of following works were carried out 

to boost the cell performance by enlarging the porous electrode volume [7], developing novel porous 

electrode materials [8] and introducing new cell architectures [9-11]. 

Porous electrodes are beneficial to the performances of fuel cells. It is optimal to operate porous 

electrode at the maximum reaction rates everywhere within the porous medium. However, porous 

electrodes in MFC frequently operate with non-uniform reaction rates. In some parts of the porous 

electrodes, the reaction rate can be as low as zero [12]. It is thus intriguing to find ways to improve the 

utilization degree of the porous electrodes. Our previous works show that electrode aspect ratio has a 

great effect on the reaction rate distribution in the MFC system [13]. Consequently, optimizing 

electrode aspect ratio is a promising way to improve the utilization degree of the porous electrodes. 

Work in search of optimized electrode aspect ratio has been performed in the passive direct methanol 

fuel cells [14]. Yet, detailed analyses have not been conducted to investigate the working mechanisms 

of the electrode aspect ratio on the reaction rate distribution in microfluidic fuel cell.  

In the present work, a 3-D numerical model is developed for MFC with flow-through porous 

electrodes to evaluate the effects of electrode aspect ratio on the reaction rate distribution and 

demonstrate the feasibility of improving the utilization degree of the porous electrode by alternating 

the electrode aspect ratio. Optimized electrode aspect ratio will be derived for this energy system. 

2.  Numerical model 

A 3-D numerical model is established for MFC with flow-through porous electrodes. The 

computational domains of the fuel cell are shown in figure 1. The anolyte and catholyte contain 2 M 

𝑉2+ in 4 M aqueous 𝐻2𝑆𝑂4 and 2 M 𝑉𝑂2
+ in 4 M aqueous 𝐻2𝑆𝑂4, respectively. In the operation, the 

anolyte and catholyte are pumped into the fuel cell from its two opposite inlets, and then flow through 

the porous electrodes. The electrodes employed here are made of carbon paper. Electrochemical 

reactions occur at the electrode-electrolyte interface. After passing the corresponding electrodes, the 

two streams meet each other in the common middle channel, make a 90°turn and finally flow out of 

the cell in a laminar format. 

 

 

Figure 1. Computational domains of MFC with flow-through porous electrode. 

 

The overall redox reactions considered in this work are: 

Anode: 𝑉2+  → 𝑉3+ + 𝑒−                                                      (R1) 

Cathode: 𝑉𝑂2
+ + 2𝐻+ + 𝑒−  →  𝑉𝑂2+ + 𝐻2𝑂                                    (R2) 
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In the present model, the following assumptions are adopted:  

⚫ The MFC operates under the steady-state conditions;  

⚫ The gravity effect and ionic migration are negligible;  

⚫ Incompressible fluid flow is assumed; 

⚫ Dilute solution approximation is adopted. 

2.1.  Governing equations 

The present 3D numerical model considers the transport of momentum, transport of species, transport 

of electrons/ions and electrochemical reaction processes. The following governing equations are 

employed in the numerical model:  

2.1.1.  Fluid flow. The mass transport is described by: 

∇ ∙ (𝑈⃗⃗ ) = 0 (1) 

here U⃗⃗  denotes the velocity vector. 

The momentum equation used to describe the fluid flow in the porous electrodes is given below: 

∇𝑃 = −
𝜇

𝐾
𝑈̅ + 

𝜇

𝜀
∇2𝑈⃗⃗  (2) 

where P is pressure, , K is the permeability, μ is the electrolyte viscosity and ε is the electrode porosity. 

The momentum equation used to describe the laminar flow in the middle channel is as follow:  

(𝑈⃗⃗ ∙ ∇𝑈⃗⃗ ) =  −
1

𝜌
∇𝑃 + 

𝜇

𝜌
∇2𝑈⃗⃗  (3) 

where 𝜌 is the electrolyte density. 

2.1.2.  Species transport. The species transport in the middle channel is described by: 

𝑈⃗⃗ ∙ ∇𝑐𝑗 − 𝐷𝑗∇
2𝑐𝑗 = 0 (4) 

where the subscript 𝑗 indicates the species involved in the electrochemical reactions, including  𝑉2+, 

𝑉3+,  𝑉𝑂2+, 𝑉𝑂2
+ and 𝐻+. 𝑐 is the bulk concentration and 𝐷 is the diffusion coefficient.  

The governing equation for the species transport in the porous electrodes is described by: 

𝑈⃗⃗ ∙ ∇𝑐𝑗 − 𝐷𝑗
𝑒𝑓𝑓

∇2𝑐𝑗 = 𝑆𝑗 (5) 

where 𝐷𝑒𝑓𝑓 refers to the effective diffusion coefficient and 𝑆 denotes the species source term. 

2.1.3.   Charge transport. The governing equation for the charge transport in the middle channel can 

be written as: 

∇ ∙𝑖𝑙
→= 0,    =𝑖𝑙

→ − 𝜎𝑙∇∅𝑙 (6) 

where 𝑖𝑙 is the electrolyte current density. 𝜎𝑙 is the electrical conductivity of the electrolyte. ∅𝑙 is the 

electrolyte potential. 

The governing equations for the charge transport in the porous electrodes include: 

∇ ∙𝑖𝑠
→= 𝑄𝑠,  =𝑖𝑠

→ − 𝜎𝑠
𝑒𝑓𝑓

∇∅𝑠 (7) 

∇ ∙𝑖𝑙
→= 𝑄𝑙 ,    =𝑖𝑙

→ − 𝜎𝑙
𝑒𝑓𝑓

∇∅𝑙 (8) 

where 𝑖𝑠 is the electrode current density. ∅𝑠 is the electrode potential. 𝜎𝑠
𝑒𝑓𝑓

 and 𝜎𝑙
𝑒𝑓𝑓

 are the effective 

electrical conductivities of the electrode and electrolyte, respectively. 𝑄𝑠 and 𝑄𝑙 are the charge source 
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terms of the electrode and electrolyte, which can be derived by: 

𝑄𝑠 = −𝑄𝑙 = −𝑎𝑖 (9) 

where 𝑖 denotes the charge transfer current density, which can be given by the Butler-Volmer equation. 

2.2.  Numerical procedure 

In the simulation, constant flow rate is specified at the inlets for the anode and cathode sides. Constant 

pressure is set at the outlet of the middle channel. Non-slip condition is given at the channel walls. 

Reactant concentrations are specified at the inlets for anode and cathode sides. Convective mass 

transport condition is employed at the outlet of the middle channel. Non-flux condition is assumed at 

the walls. Electrical potentials of the anode current collector is set to be 0 V and electrical potential of 

the cathode current collectors is set to be cell voltage. All other boundaries are set to be insulated from 

electricity. The values of the input parameters are summarized in table 1. 

  

Table 1. Key parameters used in the simulation model. 

Parameter Value Units 

𝑐𝑉2+
0  1.89 × 103 mol m−3 

𝑐𝑉3+
0  0.11 × 103 mol m−3 

𝑐𝑉𝑂2
+

0  1.84 × 103 mol m−3 

𝑐𝑉𝑂2+
0  0.16 × 103 mol m−3 

𝑐𝐻+
0  8 × 103 mol m−3 

𝑈0 60 μL min−1 

𝑉𝑐𝑒𝑙𝑙 0.7 V 

 

The governing equations of the fluid flow, species transport and charge transport constrained by the 

boundary conditions are solved by the commercial software COMSOL Multiphysics. Structural 

meshes are generated. In the electrode subdomains, the mesh size is no larger than 20 μm/cell. In the 

channel subdomains, the mesh size is increased to no larger than 50 μm/cell. Relative convergence 

tolerance is set to be 1 × 10−4. In the simulation, the equations involved in the fluid flow are first 

solved and the results are then used to solve the species and charge transports. The final power density 

is normalized by the anode volume for the comparison convenience among different cases. 

 

 

Figure 2. Comparison between the numerically predicted 

power density curve with the experimental data in [15] (under 

ambient conditions with a flow rate of 60 μL min−1). 
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2.3.  Model validation 

The developed model is validated by comparing the simulated power density curve with the 

experimental data in [15]. The operating conditions and geometrical dimensions used in the simulation 

are the same as those used in the experimental study, where the porous electrode is made of Toray 

carbon paper (TGPH-090). As shown in figure 2, the simulated and experimental data fit well with 

each other. In the following analysis, the validated model was employed to investigate the effects of 

the electrode aspect ratio on the reaction rate distribution in MFC with flow-through porous electrodes. 

3.  Results and discussion 

In the following part, a series of simulation results for the reaction rate distributions in the rectangular 

electrodes of MFCs are shown first, and then the analysis on the observations of these simulations are 

given. Here rectangular electrodes are chosen as they are easy to machine and are the most commonly 

used geometry. 

3.1.  Characteristics of reaction rate distribution in porous electrode 

The reaction rate distributions in the rectangular electrodes with different widths are presented in 

figure 3. It can be seen that the reaction rate distribution is uniform in the y direction. Yet, in the x 

direction, the reaction rate decreases rapidly from the electrode/channel interface towards the reactant 

inlet. In the region close to the reactant inlet, the local reaction rate values are almost zero, which 

indicates a low utilization degree of the porous electrode material. From figure 3, it can be known that 

to improve the utilization degree of the porous electrode material, we should decrease the electrode 

width in the x direction and increase the electrode length in the y direction at the same time, which 

means to change the electrode aspect ratio. 

 

 

Figure 3. Reaction rate distribution in porous electrodes with different widths. 

3.2.  Effects of electrode aspect ratio on reaction rate distribution 

Decreasing the aspect ratio from W:L=12:1 to W:L=3:4, similar reaction rate profiles can be observed 

as shown in figure 4. Yet, the non-uniformity degree of the reaction rate distribution decreases, which 

means an increased utilization degree of the porous electrode. Further decreasing the aspect ratio, a 

relatively uniform reaction rate distribution was observed in the case with W:L=2:6 and an opposite 

distribution pattern with reaction rate increasing from the electrode/channel interface towards the 

reactant inlet was observed in the case with W:L=1:12. The different distribution characteristics of the 

reaction rate in the electrodes with different aspect ratios can be explained by the different ratios of 

concentration related activation loss to ohmic loss in these cases. 

Corresponding cell performances for these cases are presented in figure 5. We can see that the 

maximum power output was achieved in the case with W:L=2:6. Compared to the cases with a larger 

aspect ratio, this case displays a better performance due to the decreased ohmic resistance. Yet, further 

decreasing the aspect ratio will bring a worse performance as the fluid velocity was too low and thus 

the increased concentration related activation loss began to dominate the system. From the results, we 

can obtain an optimal aspect ratio, i.e. W:L=2:6 for the electrode aspect ratio design. 
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Figure 4. Reaction rate distribution in porous electrodes with different aspect ratios. 

 

 

Figure 5. Cell performances of MFCs with different electrode aspect ratios. 

4.  Conclusions 

In this work, effects of electrode aspect ratio on the reaction rate distribution in MFC with flow-

through porous electrodes were investigated based on a 3-D numerical model. The results show that it 

is feasible to improve the utilization degree of the porous electrode by alternating the electrode ratio. 

Optimized electrode aspect ratio is demonstrated to be W:L=2:6. The present findings about the 

electrode aspect ratio can be used to optimize the MFC design in the future. 
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