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Abstract. In this paper, three kinds of algorithms usually used in molecular simulation are 
introduced in detail. In order to compare the results of the fluid transport coefficients among 
different algorithms, uniform fluid 3-D model  calculated. With the aim of comparing the 
temperature adaptability, crystal copper nano-bar model is simulated with MD method. It is very 
helpful for the choice of different calculating aim. 

1.  Introduction  
As an auxiliary method of molecular behavior research, molecular dynamics simulation has been widely 
used in nanoscale fluid and solid model research [1][2][3]. The MDS method is based on the Newton's law 
of motion, approximates the differential equation by the finite difference method, and makes the motion 
of the particle transitions from the description of continuous variables and differential operators to the 
description of discrete variables and finite difference operators. For numerical solution on the computer, 
there are many finite difference algorithms that can solve Newton's equations of motion, and they are 
given in detail in many literatures [4][5][6]. Molecular dynamics requires high accuracy in time and space, 
and it is necessary to select an appropriate time integration algorithm according to the purpose of 
calculation. 

Verlet L. presented the famous Verlet algorithm [6] as early as 1967. This algorithm is based on the 
Taylor expansion and is widely used as a method for calculating the particle displacement, velocity, and 
acceleration in the simulation. The displacement truncation error of the basic form of the Verlet 
algorithm is O( t4), and the truncation error of the velocity calculation is O( t2). The algorithm 
requires that when calculating the velocity at time t, the position at t- t and t+ t must be known in 
advance. That is, the calculation of velocity at t is performed after the position at t+ t is determined. 
This results in velocity and displacement calculation are not synchronized. When energy calculation is 
performed, kinetic energy and potential energy cannot be calculated at the same time, which increases 
the occupation of memory storage space. For a constant temperature system, when a speed scale is used 
for temperature calibration, since the displacement calculation is not limited by the speed, the 
temperature correction cannot affect the displacement calculation result, this causes the speed 
calculation to be decoupled from the displacement calculation, it is not suitable with Verlet algorithm 
for direct velocity scaling method. 

Then in 1982, Velocity-Verlet algorithm [7] was proposed as a further improvement of the Verlet 
algorithm by Swope W. C. et al as follows: 
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By formula (1) (2), we can see that compared with the Verlet algorithm, the advantage of this method 
is that it can obtain displacement, velocity and acceleration at the same time, and there is an explicit 
speed item. On the premise that the displacement truncation error is not changed, the velocity truncation 
error is reduced to O ( 4t ), and the displacement and velocity calculation results can be obtained at the 
same time. The stored variables are the same as the Verlet algorithm, 9N variable storage spaces are 
needed. 

Another evolutionary algorithm form was proposed based on the Verlet algorithm by Beeman [8] in 
1976. Although the displacement truncation error is O ( 4t ), the speed truncation error reduces to O 

( 3t ), but the storage space required for its calculation increases to 12N. 
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In 1971, Gear proposed the prediction-correction integration method [9]. The algorithm can select 
different highest order micro-scores, which is correction factor orders, according to different calculation 
requirements, so that the truncation error progression can be appropriately adjusted. 
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A set of vectors is defined by the above formula, where 0r is the position of the atom: 
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The vector above satisfies the following relationship  
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For Gear algorithm, the correction factor is predicted as: 
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For second-order equations of motion, ( , )r f r r
 
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c pr r r   . For the example in this paper 

4th-order correction factor coefficients are used, and the storage space for calculation variables is also 
12N. The calculation method can be divided into three steps: first, according to the Taylor expansion, 
the new position rp, velocity vp, and acceleration ap are predicted, and then calculate the force and 

acceleration a(t+ t) according to the new position. This acceleration is then compared with the 
acceleration ap which is predicted by the Taylor’s expansion, and finally the difference between the two 
is used to correct the position and velocity terms during the correction process. 

In principle, an algorithm should be able to predict all particle trajectories at the same time whether 
for short period or for a long period of time. In theory, the Newton's equation of motion is time-invertible, 
but due to the approximation of the numerical calculation method, the system error and truncation error 
exist. It is not time reversible, that is, if the momentum of all particles is reversed at a certain moment, 
the system cannot be inverted in the phase space. The numerical calculation method should reduce the 
calculation error as much as possible. In addition, particle distribution, the stability of the system during 
calculation, the trend of the kinetic energy potential energy curve, the simplicity of the calculation 
method, the amount of memory used and the cycle time, etc., All of these have become factors 
influencing the choice of numerical methods in the simulation process. In this paper different calculation 
models will be used to compare different numerical calculation methods and provide reference for the 
correct choice of calculation methods in different situations. 

2.  Influence of Integral Algorithm on Temperature Stability of Solid Model  
Nanoscale copper rod model is used to research the model’s changing with temperature under different 
integration methods, aiming to discuss the applicability of different numerical integration methods to 
temperature. The copper rod atoms are arranged according to the FCC ideal lattice, and the nanorod size 
is selected as 5a×5a×17a (1.805 nm×1.805 nm×6.137 nm), so the number of atoms is 2118. The surface 
of the model is defined as a free surface boundary, and the temperature is controlled by the NTV 
ensemble velocity scale, time step is set as 1.0E-15 seconds. The initial velocity of the particles in the 
model is subject to the Maxwell-Boltzmann distribution of the temperature, and the interatomic force is 
EAM[10] potential which is suitable for the multi-body potential mosaic function, and for simulating the 
mechanical behavior of metals. With relaxing 100,000 steps, the comparison results are shown in Table 
1. 

Table 1. The relationship between control temperature and the profile of crystal copper nanorods 
model using MDS method with different algorithms。 

N
ano rod profile 

            algorithm
s

   

  
Gear  693  973K 
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Beeman  673  983K 

Velocity-
Velert 

 333  
1003K 

Note: The upper side is the left view and the right view respectively, and the lower side is the top view 
With velocity-Verlet algorithm, when the control temperature is lower than 333K, the copper rod 

maintains the original geometric shape, and when the temperature is controlled at 333K, a 45-degree-
dark diagonal region appears along the length of the copper rod. With further increase in temperature, 
the copper rod shrinks to a spherical shape at 1003K. The copper rod of the Beeman algorithm keeps 
the original shape of the holding temperature up to 673K. When the control temperature is higher than 
673K, the copper rod shrinks. The original shape of the Gear algorithm keeps the temperature up to 
693K, but the subsequent contraction speed is larger than that of the Beeman algorithm, it has shrunk to 
a nearly spherical shape at 973K, and the result of the Beeman algorithm is still in the process of 
continuous contraction. By comparing the temperature control of nanometer copper rods, it can be seen 
that when using the EAM potential function for molecular dynamics simulation of single crystal copper 
nanorods, the original shape of the Gear algorithm maintains a higher temperature of 693 K. When the 
Velocity-Verlet algorithm is used, its temperature stability is lower than that of the other two algorithms, 
and its original shape maintaining temperature is only 333K. 

3.  The Applicability of Different Algorithms for Uniform Fluid Transport Parameters  
Liquid argon is used as the fluid model medium, and the influence of the different algorithms method 
on the results of the fluid transport coefficient is discussed using a homogeneous fluid model under 
periodic boundary conditions. There is no obvious interface between the model and the surrounding 
molecules. The molecular arrangement still adopts the FCC crystal structure. The fluid density is 1.413 
g/cm3, with the NVT ensemble, and the control temperature is 91.1K. The intermolecular interaction 
potential is the commonly used LJ potential [11]. The model size is set to 10×10×10 FCC and the number 
of atoms is 4000. The transport-coefficient calculation method uses the Green-Kubo formula under the 
time autocorrelation theory [12]. 

Figure 1. Average potential-time curve of 
uniform fluid 3-d model with various 

methods 

 Figure 2. Density distribution curve of 
uniform fluid 3-d model with various 

methods 
 

The potential energy, density distribution of the fluid model was simulated with Velocity-Verlet 
algorithm, Beeman algorithm, and Gear prediction-correction integration method, and the results under 
different algorithms were obtained as shown in Fig.1 and Fig.2. Through comparative analysis of the 
calculation results of the fluid model parameters, the effects of different calculation methods on the fluid 
transport parameter results are discussed. 
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From the average potential energy calculation results and curve trend among the three calculation 
methods in Figure 1, we can see that it is more moderate using Beeman algorithm to obtain the average 
potential energy per unit of molecular energy; the average molecular potential energy obtained by the 
Verlet-Velocity algorithm is -1.16E-20 joule; while the Gear algorithm gives a molecular mean potential 
energy -1.32E-20 Joules. The value of potential energy can reflect the size of the intermolecular forces 
and the tightness of molecular arrangement from another aspect, from the average potential energy of 
Velocity-Verlet algorithm, we can see that the molecular arrangement is slightly closer than the other 
two algorithms. 

Figure 3. Viscous coefficient-time curve of uniform 
fluid 3-d model with various method

As a major application of the molecular dynamics method in the computation of fluid properties, the 
viscosity of the equilibrium nanofluids was calculated using the Green-Kubo formula with the three 
methods. As shown in Fig. 3, when the viscosity experimental value is 2.21E-4Pa.s [13], the relative error 
between the calculated results and the experimental values obtained by the Velocity-Verlet algorithm, 
the Beeman algorithm, and the Gear algorithm is 2.0%, 17.7%, 36.3% respectively. After comparing the 
viscosity curves obtained by different calculation methods, it can be known that the Velocity-Verlet 
algorithm can obtain ideal viscosity calculation results, but with a relatively large calculation range, the 
Beeman algorithm can obtain relatively accurate viscosity under a relatively small calculation range, 
when the calculation scale is reduced, the time required for each cycle calculation will be greatly 
shortened, so the Beeman algorithm has higher efficiency in fluid viscosity calculation. 

4.  Conclusions  
1) With the simulation of Nanoscale copper rod at different temperatures, it was found that the 
temperature stability of Beeman algorithm and Gear algorithm is better than that of Velocity-Verlet 
algorithm. 

2) When using the equilibrium molecular dynamics method to study the physical parameters of the 
fluid model, the potential energy curve and viscosity curve of the Gear algorithm require a relative long 
process into a stable state, and have a large fluctuation range, so the multi-period calculation is needed. 
In order to get stable results, although the Velocity-Verlet algorithm has fast convergence, and the 
density distribution and pressure distribution are relatively uniform, the computational scale needed for 
viscosity calculation is relatively large, which virtually lengthens the calculation cycle. The density and 
pressure distribution of the Beeman algorithm are uniform, and the viscosity simulation can be 
completed within a relatively small calculation range, which can shorten the calculation period and 
ensure the accuracy of calculation. Therefore, when the main purpose of the simulation calculation is to 
calculate the fluid transport coefficient, the Beeman algorithm can be considered as the integral 
calculation method. 
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