
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

GBEM IOP Publishing

IOP Conf. Series: Earth and Environmental Science 186 (2018) 012010  doi :10.1088/1755-1315/186/6/012010

 
 
 
 
 
 

Risk-based Reactive Power Optimization Based on Tribe Q-
Learning Algorithm 

Li Feng1, Xu Zhibin1, Xiao Li1 

1Guangdong Electric Power Research Institute of energy technology limited liability 
company. China. 
lifeng186@126.com 

Abstract. In this paper, the risk assessment theory is introduced into the traditional reactive 
power optimization problem. Moreover, a novel tribe Q-learning algorithm with knowledge 
transfer is proposed, which is developed from the search mechanism of artificial intelligence 
algorithm and the iteration mode of Q-learning. The Q matrix is adopted as the knowledge 
matrix for the storage of the search information of the tribe. During online learning, the rate of 
TQL can be accelerated significantly via the knowledge transfer. The simulation on IEEE 118-
bus systems demonstrates that the rate of TQL is two to twenty times faster than that of other 
AI algorithms while the global convergence can be ensured. 

1. Introduction 
With the development of the industrialization process, the construction of power system have been 
accelerated. The development of interconnection of regional power grid and cross-regional 
transmission has become faster. At the same time, more large-scale wind energy, solar energy and 
electric vehicles has connected to the system in distribution network side, which makes the power grid 
become more complex and may result in severe challenges to the secure and stable operation of power 
grids. In order to obtain an appropriate trade-off between system security and economy, since the 
1990s, several scholars have studied the security issues of reactive power optimization[1]. Based on 
the planning and adopting the traditional reactive power optimization model, reference [2] attempted 
to make up for the deficiencies of traditional methods through the rational configuration of reactive 
power compensation location. Reference [3] has proposed a reactive power optimization model based 
on Monte Carlo simulation and voltage security constraint, which takes the improvement of the node 
voltage level as the goal of optimization. From the perspective of risk, reference [4] has analysed the 
influence of power loss, voltage instability and voltage violations on the operation of power system, 
and configured the various reactive power resources in the system with the aim of minimizing 
operation risk. However, the above studies evaluate the security of the system from the perspective of 
static voltage state, ignoring the effects of line overload and the effects of load fluctuations. 

In order to improve the ability of power system to withstand the operation risks, the theory of 
power system risk assessment is introduced into the traditional reactive power optimization issue, and 
a risk-based reactive power optimization (RBRPO) mathematical model is constructed. The model 
aims at reducing operational risk and active power loss of the system and adopts the probability model 
to evaluate the risk of transmission line overload and node voltage violation when the transmission 
line occur faults at the same time to reduce the operational risk and the active power loss of the system. 

Risk-based reactive power optimization is a complex mixed discrete nonlinear programming issue. 
The solution to this kind of issues mainly includes classical mathematical method and heuristic 
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artificial intelligence algorithm. Compared to classical mathematical method, artificial intelligence (AI) 
algorithms such as genetic algorithm (GA) [5], particle swarm optimization (PSO) [6], artificial bee 
colony (ABC) [7] and so on have been widely applied to various areas of power system optimization 
due to its outstanding features of less dependence of an accurate system model, convenience of 
application and global optimization and its suitability for dealing with discrete, non-linear large-scale 
issues [8] [9]. However, these algorithms can only deal with the problem in isolation without the 
ability to store information and self-learning, which results in inefficiencies in dealing with similar 
tasks. 

Nowadays transfer technology has become a powerful tool to accelerate the process of machine 
learning for similar multitasking optimization. In practical work, many historical task and new tasks 
being executed have a number of common features in essence. Transfer learning is to find the 
similarity between the past and present, using the previous knowledge to guide the current task, which 
significantly improve the efficiency of task optimization [10]. Based on the previous analysis, this 
paper introduces a brand new tribe Q-learning algorithm (TQL) with knowledge transfer to solve the 
risk-based reactive power optimization model. Different from the common artificial intelligence 
algorithm of random search mode, TQL uses four kinds of individuals, i.e., tribal chiefs, civilians and 
rangers as the search subject to find the optimal solution. TQL uses the Q matrix in the Q-learning 
algorithm to store the group optimization information and guide the next step of the optimization 
method. At the same time, the dimensionality of the knowledge matrix has been reduced, which avoids 
the curse of dimensionality in the large-scale system. In the pre-learning process, TQL stores the 
optimization information of the source task in the optimal knowledge matrix. Through the extraction 
of the similarity, the initial matrix of the similar task is formed in the form of non-linear transfer. 
Therefore, the optimization process for new tasks will be significantly accelerated during the online 
learning process. In order to verify the effectiveness of the new algorithm, TQL is applied for RBRPO 
of 24 scenarios on IEEE118-bus system, which performance is compared with that of other existing AI 
algorithms. 

2. Mathematical model of RBRPO 

2.1. Operation risk assessment 
The operation risk assessment of power systems means a comprehensive evaluation with the 
possibility and severity of random perturbations, which can be described by the sum of the product of 
probability and the consequence of each random disturbance [11]: 

( ) ( )i i
i

RI P s I s=              (1) 

wheresiis the ith random perturbations, P(si) and I(si) are the probability and risk index of si, 
respectively. 

This article focused on contingency taking into account the failure of the transmission line 
outage.According to the statistical data, the failure rate of transmission line Li at a certain time 
intervalfollows the Poisson distribution, thus its can be described as 

(L ) 1 exp( / 8760)i iP t= − − Δλ (2) 
whereλi is the annualfailure rate of transmission line i;Δt is the fault calculation time, the unit is one 
hour. 

If the line outage is an independent event, the probability of a single failure at any time can be 
described as[12]: 

L

L L L
,

(1 ))
i i j

j U j i
P P

∈ ≠

= −∏ρ           (3) 

whereULis the setof all the normal operational transmission lines, sowe can get the probability of two 
and more than two lines failure occurred. 

The outage of a transmission line may results in the transfer of active power flow, and a sudden 
line overload or a severe node voltage deviation may happen in the neighbourhood of the failure point. 
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In order to distinguish the probability of failure more effectively between low probability but serious 
failure andhigh probability but slight failure, a utility function is employed so as to fully describe the 
risk index of branch power and node voltage. 

The branch power risk index is used to describe the overload of the line power flow, which is 
defined as follows: 

max max( ) /t t i i iRI a T T T
α

= −          (4) 

whereαis the set of overload transmission line;Tiis the apparent power flowing through line i; Timax is 
the limit of line power flow;a,b are positive real numbers. 

The node voltage risk indexmeasures the extent of the node voltage overrun, which can be defined 
as follows: 

( + )u u uRI a b
β

ω=              (5) 

max
max

max

min
min

min

         >    

         

i i
i i

i
u

i i
i i

i

U U U U
U

U U U U
U

β

β

ω

 −

= 

− <




      (6) 

whereβis the set of the voltage overrun node; Viis the actual voltage amplitude of node i; Uimax is the 
upper limit of voltage for node i; Uimin is the lower limit of voltage for node I;au,b are positive real 
numbers. 

Taking into account the probability of failure of transmission lines, the system comprehensive risk 
indexcan be calculated as follows: 

( )ρ= + k k
k t u

C
RI RI RI                (7) 

whereρkis the kth probability of expected faultoccurrence; Cis the set of expected fault. 

2.2. Objective function andConstraints ofRBRPO 
Under the premise to meet the various operational constraints, RBRPO can adjust the distribution of 
the power flow by reasonably configuring the switching capacity of the reactive power compensation 
device, the generator terminal voltage and the transformer tap ratio, so as to reduce the active power 
loss of the power grid and operational risk as much as possible. In this paper, the linear weighting 
method is adopted to convert multi-objective problem into single objective processing.The objective 
function of RBRPO can be described as follows: 

Loss 2 3 dmin  ( ) ( ) ( ) ( )f x P x RI x V x= + +1ω ω ω          (8) 
wherePLoss(x), RI(x) and Vd(x)denote the three objectives of the active power loss, risk index and 
voltage deviation component after normalization, respectively;ω1, ω2, ω3are the weights of each 
objective.  

The voltage deviation componentVd can be calculated as follows: 
max min

s
, max min

2 -
=

N

i i j

i j S i j

U U U
V

U U∈

−
− (9) 

whereSNis the set of nodes. 
The active power loss PLosscan be described as: 

2 2
s

,
= [ 2 cos ]

N

ij i j i j ij
i j S

V G U U U U
∈

+ − θ (10) 

Whereθijis the voltage phase angle difference between nodes i and j;Gijis the conductance oflinei-j. 
Constraints include power flow constraints, control variable constraints, and state variable 

constraints[13]: 
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(11) 

where vectorvariable x=[QC,KT,U,θ,PG,QG]Tdenotes the switching capacity of the reactive power 
compensation device, the transformertap ratio, the node voltage amplitude, the node voltage phase 
angle, active and reactive power of generator , respectively.PDiand QDi are the active and reactive load 
of node i, respectively; Bijis the susceptance of linei-j; SC, ST, SG, SDand SL are the set of reactive power 
compensation devices,transformers, generators, load buses, and lines, respectively. 

3. TQL with knowledge transfer 

3.1. Knowledge matrix 
The Q-value matrix of Q-learning is adopted as the knowledge matrix of TQL and defined as a record 
of algorithm optimization strategy[14][15][16].The element of knowledge matrix, i.e., Q(s,a), denotes 
the expected accumulative reward by selecting an action a in a state s.In the process of optimization, 
the algorithm achieves the convergence after a large number of iterative trial and error, and the process, 
the optimization body maps the state to the action, is stored in theknowledge matrix.As shown in 
Figure 1, an agent (here it means a tribal member) can obtain an action policy under a given state from 
the knowledge matrix and update its prior knowledge matrix by feedback. 
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Figure 1.Knowledge matrix. 
Basically, the Q-value matrix is a lookup table with the size of |S|×|A|. For large-scale complex 

systems, the action space|A|will increase exponentially with the increase in the number of variables, 
that is, "Curse of Dimensionality", which results in the calculation difficult to carry out.Therefore, in 
order to considerably reduce the dimension, the original knowledge matrix is divided into several 
interrelated low-dimensional sub-matrices. The sub-matrices correspond to the corresponding 
variables, and the rows and columns of the matrix correspond to the state and action of the variables 
respectively, and the number of rows of Qi+1 is the same as the number of Qicolumns.In other words, 
the action space Ai of the ith variable is also the state space Si+1 of the (i+1)th variable.The action 
selection process of the different variables is no longer isolated, but presents a chain state - action pairs 
to extend, i.e., the state space Si+1 of the (i+1)th variable cannot be selected until the ith variable has 
been determined.In the knowledge matrix, the elements not only reflect the merits and demerits of the 
current strategy, but also reflect the compactnessdegree between adjacent variables. The larger the 
element value, the closer the state-action combination of adjacent variables is. 

A multi-agent cooperative mechanism is introduced into TQL algorithm to update the knowledge 
matrix. When the agents (tribal members) complete a trial and error each time, the algorithm will 
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assess its fitness and give this selected state - action pair a reward. Then agents update the knowledge 
matrix according to the given reward value, thus multiple knowledge elements is updated through an 
iteration.  

Compared with the traditional Q-learning algorithm,the matrix convergence process is obviously 
accelerated. After introducing multi-agent coordination, the knowledge matrix is updated as follows 
[17]: 

1 1( , , ) max ( , ) ( , ) 
i i

k k k k k k k k k
ij ij ij ij i i i ij ija A

R s s a s a s a+ +

∈
= + −ρ γ Q Q          (12) 

1 1( , ) ( , )k k k k k k k k
i ij ij i ij ijs a s a sαρ+ += +Q Q           (13) 

wherei denotes the ith variable and j denotes the jthtribal member; α and γ are the learning factor and 
discount factor, respectively; R(sij

k,sij
k+1,aij

k) is the reward of a transition from state sij
k to state sij

k+1 
under a selected action aij

k in the kth iteration; 

3.2. Optimization mode 
In order to improve the ability to adapt to the environment, primitive people living in the same habitat 
will spontaneously form tribes where different tribal members achieve survival and 
developmentthrough mutual cooperation. Inspired by this primitive human social activity, TQL is able 
to achieve global convergence and accurate local search through the mutual cooperation by different 
tribal members. 

The algorithm classifies and divides the tribe members according to the reward function values. 
The top 25% of the reward function are the tribal patriarchs, where the best individual is the chiefs, 25% 
of the individuals in the middle are civilians, and 50% of the rears are rangers. There are two 
tendencies, i.e., search and utilization in the optimization mode of reinforcement learning. Focusing on 
search can enhance its global convergence, and focusing onutilization can improve the convergence 
rate. 

Following the behavioural strategy or chaos search strategies are taken to search by chiefs, tribal 
patriarchs and civilians, who assume the main search task. Chaos phenomenon is random, regular and 
ergodic, therefore, this search is conducive to enrich the diversity of the population and jump out of 
the local optimal solution. 

The fitness of tribal patriarchs in the tribe is in a dominant position, which guides civilians and 
rangers, but follows the chiefs of the lead. Thus, the patriarchstake chaotic searches based on Logistic 
mapping as the main mode of movement andhave certain following behavior to chiefs. The movement 
of the patriarch can be described as follows: 

            (14) 

2 sign lead( )k k
if hr x x= −             (15) 

            (16) 
where f1, f2 are the chaotic search components and follow the chiefs components, respectively;μis the 
chaos control parameter, 4 in this paper; ri

tis the random number generated by the chaotic sequence for 
the tth cycle;rsignis a random number with a value of 1 or -1; histhe approximation factor, 
characterizing the degree of individual followschiefs,this paper takes 0.1;xlead is the chiefs; Step 
vectorstepi=(stepi

1，stepi
2,…，stepi

Dim),  
             (17) 

wherexrand is a randomly selected patriarch differ from itself. 
Chiefs take the same mode of movement as patriarchs and are also carried out according to Eqs. 

(14) to (16). The difference is that the follow components toward itself are zero. 
The movement of civilians consists of the following components of the chiefs and the patriarchs 

         (18) 

1 1
1 sign(1 ) ,t t t t k

i i i i ir r r f r r stepμ − −= − =

1 2
k k
i ix x f f= + +

rand , 1,2,...,k
i

k k
istep x x k Dim= − =

1 1 lead 2 2 str( ) ( )k k k k k k
i i i ix x c r x x c r x x= + − + −
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whereD is a dimension of the solution component; c1，c2 are the following factors of the chiefs and 
patriarchs, this paper takes 1.5 and 1, respectively;r1, r2are random numbersamong [0,1], 
respectively;xstr is the closest to i patriarch. 

Rangers adopt the Pm-greedy strategy. Under the guidance of the knowledge matrix, rangerssearch 
in the feasible domain to improve the efficiency of the algorithm, through the utilization of 
information. It can be described as follows: 

1 1
3 m1

3

arg max ( , )    

                                   
i

i

k k
i ij ik a

ij

s m

s a r P
a

a r P

+ +

+ ∈
 ≥= 

<

A
Q

        (19) 

wherer3∈ [0,1] is the random number;Pm ∈ [0,1] denotes migration probability; asmeans roulette 
selection. When r3< Pm, the ranger chooses roulette according to the action probability matrix Pi; when 
r3 ≥ Pm, the ranger chooses the action that is expected to accumulate the maximum reward in the 
current state, that is, the implementation of the greedy strategy. 

The action probability matrix Pi denotes the probability of selection of state-action pair,and has a 
positive correlation with the value of the knowledge matrix element Qi(si,ai). Pi is updated as follows: 

'

'
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( , ) max ( , ')
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
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A

e
Q Q

eP
e

    (20) 

whereβis the divergence factor to magnify the divergence of sub-matrices and ei is the transition 
matrix. 

After each round of iteration, all the tribal members have completed the search and got the 
feedback of the current round of reward function. According to the reward function, the tribal 
members are reordered and assigned new roles. Ranking front tribal members become chiefs, 
patriarchs and civilians, sorted by the later became rangers, where the former chiefs to maintain the 
original position unchanged. Therefore, the algorithm not only guarantees the continuity of the elite 
individual, but also maintains the global search performance in the solution space. 

3.3. Transfer learning 
If the task ready to be completed by TQL contains multiple similar tasks, then the efficiency of new 
tasks can be improved through knowledge transfer.  

As illustrated in Figure 2, based on the existing knowledge of source task, knowledge transfer can 
accelerate the learning process of new tasks. In order to acquire the initial knowledge of similar new 
tasks, the source task must be studied in pre-learning at first. Assuming that the action space and the 
state space keep constant, the optimal knowledge matrices of the source tasks can be treated as the 
initial knowledge matrices of the target tasks. In the transfer learning process, the optimal knowledge 
matrices of source tasks QS can be transferred to the initial knowledge matrices of similar new tasks 
QN. 

Source task

…

Task 1

Task 2

Task h

Pre-learning

…

Optimal knowledge 
matrices

New tasks

…

Task 1

Task y

…

Initial  knowledge 
matrices

Online optimization
Knowledge 

transfer

… … …

…

Task 2  

Figure 2.The procedure of knowledge transfer. 
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The optimal knowledge matrix of the source task contains both related and invalidinformation 
about new tasks. Therefore, once the related knowledge cannot be fully extracted, invalid information 
will interfere with the process of new task learning, which will reduce the effect of transfer learning, 
i.e., malignant negative transfer. To handle this, new tasks only extract the closely relevant knowledge 
and takes similarity as the criterion to select the object for learning during the process of transfer 
learning  

In RBRPO, a task corresponds to a time section, and the demand for active load at different time 
scenarios is different. Since the solution of RBRPO is mainly determined by the power flow of the 
system, the active power deviation of different time scenarios is defined as the similarity between 
source and new tasks. 

Assuming that the active power demand of the new task xis PDx, the two source tasks with the least 
active power deviations from task x are task i and task k, and PDi<PDx<PDk is satisfied, the similarity 
between task x and the two source tasks can be calculated as follows: 

D D
1

D D

D D
2

D D

η

η

−
= −


− = −

x j

k j

k x

k j

P P
P P
P P
P P

           (21) 

whereη1 and η2 are the similarities weighting factors, with η1+η2=1. 
The knowledge matrix of the new task x can be obtained by a linear transfer, which yields 

1 2
i i i
x j kη η= +Q Q Q                              (22) 

whereQx
i,Qj

iand Qk
i denote the knowledge sub-matrices of the ith variable in source task x, source task 

j and new task k, respectively. 

4. Case Studies 
In this paper, the TQL algorithm is used to solve RBRPOon the IEEE 118-bus system, which 
performance is compared with that of GA[5], PSO[6], ABC [7], ANT-Q[18], quantum genetic 
algorithm (QGA) [19], ant colony optimization(ACO) [20].Simulation is undertaken in MatlabR2014a 
by a personal computer with Intel(R) Core TM i7-6700 CPU at 3.40GHz with 16GB of RAM. The 
power flow calculation is based on the Matpower6.0toolbox in Matlab R2014a. 

4.1. Simulation Model 

 

Figure 3.A typical daily load curve. 
IEEE 118-bussystem consists of 54 generators and 186 branches, which is divided into three 

voltage levels, i.e.138kV, 161kV, 345kV. The number of controllablevariables of IEEE 118-
bussystem is 25, which contain the reactive power compensation capacity of the shunt capacitor, the 
ratio of the on-load tap changer and the terminal voltage of the generator. More specifically, the 
compensation capacity of the shunt capacitor is divided into [-40%, -20%, 0%, 20%, 40%]from its 
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nominal level, transformer ratio is divided into three grades as [0.98, 1.00, 1.02] and the generator 
terminal voltage is uniformly divided into seven grades as [1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06]. 

The figure 3 shows the typical load curve of the IEEE 118-bus system. Based on the demand of 
active power, load can be uniformly divided into 7 intervals,{[3556, 3897), [3897, 4239), …, [5604, 
5945]}. Therefore, the number of source tasks for the IEEE 118-bus system is 8. 

4.2. Algorithm comparison 
The optimization of the objective functionsperformed by each algorithm within 24 hours of the day is 
shown infigure 4, where the blue solid line represents the optimization result of the TQL, and the 
dotted line represents the other algorithm. It can be seen from the figure that the trend of the objective 
function of TQL is basically the same as other algorithms in one day, and its objective function curve 
is only slightly higher than ACO algorithm and superior to other AI algorithm. It shows that the 
algorithm can take full advantage of the related knowledge obtained in the pre-learning process and 
avoid the occurrence of the negative transfer, and has good global convergence performance by fully 
grasping the similarity between the source task and the new tasks. 

 

Figure 4.Optimization results of objective function of 24section obtained by each algorithm. 
Ingeneral, the solving process of AI algorithm is random and uncertain. In order to compare the 

optimal performance of each algorithm correctly, each algorithm runs 10 times. Since the algorithms 
carry outeach 24-hour load level optimization in each round of simulation, for each algorithm, the total 
number of simulation is10×24=240times, the convergence of the algorithm has been fully reflected. 
Table 1 indicates the average data of the objective functions obtained from the 10 runs of each 
algorithm. The values of the power loss, the voltage deviation component, the risk index and the 
objective function are the sum of 24 tasks. The calculation time is the sum of time for each algorithm 
to complete 24 tasks. The convergence time is the average time to complete a single task. It should be 
noted that the convergence effect of the algorithm is only determined by the objective function value 
instead ofthe power loss, the voltage stable component or the risk index. 

It can be seen from the table1, TQL algorithm only needs about 895s to complete the optimization 
of 24 tasks,whichis much faster than the other algorithms. Moreover, the convergence rate of TQL is 
2~20 times faster than the other 6 algorithms, averaging more than 10 times that of other algorithms. 
The objective function value obtained by TQL is 3407.87, which places second among all 7 
algorithms. However, its optimization performance of power loss and the voltage deviation component 
are better than ACO algorithm. This shows that TQL fully exploits the similarities between source and 
new tasks, and significantly accelerates the optimization process through knowledge transfer. At the 
same time, TQL combines the trial and error iteration mechanism of Q-learning with the random 
optimization mode of tribe organically to ensure the global convergence performance of the algorithm. 
The figure 5 and figure6 show the speed advantage and excellent search ability of TQL algorithm 
intuitively. 
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Table 1.Simulation Results of Each Algorithms on IEEE 118-bus System in 10 Times. 

Algorithm Calculation 
time (s) 

Convergence 
time (s) Ploss(MW) Vd(%) Risk index (p.u.) Objective 

function (p.u.) 
ABC 13207.65 550.31 2796.97 378.07 0.0258 3433.43 

ANT-Q 6183.42 255.76 2809.02 391.63 0.0272 3473.66 
PSO 17365.14 723.54 2795.72 371.65 0.0266 3408.83 
GA 1806.11 75.25 2802.30 379.16 0.0238 3419.48 

QGA 13090.59 545.44 2784.28 377.76 0.0252 3414.18 
ACO 8575.11 357.29 2790.39 375.17 0.0232 3398.39 
TQL 894.85 37.28 2774.39 369.06 0.0264 3407.87 

 

  

Figure 5.The averageobjective function of IEEE 
118-bus system obtained by different algorithms 

in 10 times. 

Figure 6. The totalcalculation time of IEEE 118-
bus system consumed by different algorithms in 

10 times. 
The objective function convergence performance statistics in 10 simulations of each algorithm are 

shown in table 2. In the table, variance, standard deviation and relative standard deviation are 
calculated to evaluate the convergence stability of the algorithm. TQL shows the best performance 
among all AI algorithm, especially its convergence stability, where its relative standard deviation is 
only 40% of the ANT-Q algorithm. This is because TQL reduces the global search blindness and 
uncertainty through transferor using the past knowledge. 

 
Table 2.Statistical Results of Objective Function of IEEE 118-bus System in 10 Times. 

Algorithm Worst Best Variance Standard Deviation Relative Standard Deviation 
ABC 3426.09 3440.19 17.40 4.17 1.28E-03 

ANT-Q 3458.39 3483.53 53.71 7.32 2.22E-03 
PSO 3403.34 3414.07 16.36 4.04 1.25E-03 
GA 3411.07 3430.18 36.67 6.05 1.86E-03 

QGA 3409.60 3420.62 11.88 3.44 1.06E-03 
ACO 3391.23 3401.90 10.44 3.23 0.95E-03 
TQL 3403.30 3411.35 8.17 2.85 0.88E-03 

4.3. Optimization analysis 
The node voltage and the power flow distribution of the IEEE 118-bus system at load section 20 are 
shown in the figure 7 and figure 8, respectively, which compare the situation before and after TQL 
optimization. After the optimization, the voltage deviation of the system node is reduced and 
distributed in the range of [0.96,1.04]. Therefore, the risk of the system node voltage overrun has been 
effectively controlled.It can be seen from the figure 8 that after the optimization, the distribution of the 
power flow is more uniform, which avoids the occurrence of branch overload. 
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Figure 7.The node voltage distribution of the 
IEEE 118-bus system at load section 20. 

Figure 8.The power flow distribution of the IEEE 
118-bus system at load section 20. 

The distribution radar map of the objective function and sub-objective are shown in figure 9, which 
compares the different results before and after optimization. After the optimization of TQL, the values 
of the power loss, voltage deviation, risk index and objective function are all less than the values 
before optimization, which verifies the validity of the multi-objective reactive power optimization 
model proposed in this paper. Among them, the improvement of system operation risk is the most 
obvious, the optimized risk index is only 68% of its values before optimization, which means that the 
ability to resist the power system uncertainty risk has been significantly improved through 
optimization by TQL. 

 

Figure 9.The distribution radar map of the objective function and sub-objective. 

5. Conclusion 
In this paper, a novel TQL algorithm is proposed for RBRPO. The main innovations can be 
summarized as follows: 

1) The theory of risk assessment is introduced into the tradition reactivepower optimization 
issue and the RBRPO model is proposed. The model aims at reducing the operating risk and the power 
loss of the system and optimizing the system voltage stability at the same time, which is beneficial to 
the security and economical operation of the power system. 

2) TQL combines the trial and error iteration mechanism of Q-learning with the random 
optimization mode of tribeorganically to ensure the local depth search ability and global convergence 
performance of the algorithm. 

3) The active load deviation is defined as the similarity degree. TQL can accelerate the 
optimization process of the new task by knowledge transfer using knowledge of similar source tasks. 

The convergence stability and excellent performance of TQL can be confirmed by the simulation 
results of IEEE 118-bus system, i.e., from 2 to 20 times faster than that of existing AI algorithms for 
RBRPO, while the quality of optimal solution and the convergence stability can be guaranteed. Thus 
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TQL can be a useful tool to deal with the risk-based reactive power optimization issue in power 
system. 
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