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Abstract. Contamination of water resources by synthetic dyes causes many environmental and
health problems. Fungal ligninolytic enzy mes have been applied for dye decolorization due to
its ability in degrading a wide variety of recalcitrant substances. Extracellular ligninolytic
enzyme production by white rot fungus, Lentinus polychrous, grown in glucose containing
medium supplemented with rice straw powder and soybean pomace was monitored. Optimum
condition for remazol brilliant blue R (RBBR) decolorization was studied by varying initial
RBBR concentrations, pH values, and initial crude enzy me concentrations. The result revealed
that the ligninolytic enzyme dominantly produced was laccase with an activity of 0.095 U/ml
on day 15, and a small amount of manganese peroxidase was also detected. The crude laccase
produced from L. polychrous, effectively decolorized the dye within a short period of time, that
was approximately 50% of 20 mg/l RBBR was decolorized within the first 2 hours. The
optimal pH for RBBR decolorization was 3.0 which had an efficiency of 87% within 6 hours
after incubation. Moreover, the best redox mediator of laccase was CuSQO4, whose
decolorization efficiency was over twice than that of samples without this mediator. The
decolorization intensified with increase of CuSO, concentration but higher concentrations of
chromium tended to suppress decolorization.

1. Introduction

Synthetic dyes have been widely used in textile, paper, cosmetic, food, and pharmaceutical industries.
Textile industry consumes large amounts of water supply and produces tremendous amounts of highly
colored effluent containing up to 30% of unfixed dyes and other organic compounds, that is released
during the dyeing process [1]. Based on different structures in chromophores of the synthetic dyes,
they are classified into several groups, like azo, anthraquinone, indigo, triphenylmethyl and
phthalocyanine dyes, containing complex aromatic and heterocyclic structures. These complex
structures make the dyes toxic, impermeable to light, and barely biodegradable when discharged into
the environment [2]. Furthermore, the dyes hold carcinogenic and mutagenic properties which
multiple adverse effects on the environment and health. Dye-containing effluent commonly has high
biological oxygen demand (BOD), chemical oxygen demand (COD), and high salt concentrations [1].
The dye-containing effluent accumulates in the water body obstructs sunlight penetrating through the
water, thereby reducing photosynthesis of aquatic plants and resulting in lower oxygen concentration
in the water. Moreover, as microbes also require dissolved oxygen to biologically degrade excess
amounts of contaminated dyes, these dyes in the water, eventually cause oxygen depletion, with
negative environmental consequences.
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Biological decolorization is a promising approach due to its advantages like being an
environmentally friendly process, lower chemical and energy consumptions, and reduced cost in
breakdown of organic compounds [3]. Several studies have demonstrated that fungi are able to
degrade complex organic substances using extracellular ligninolytic enzymes like laccase, manganese
peroxidase, and lignin peroxidase [4]. Ability of the fungi to produce each ligninolytic enzyme is
different among fungal species due to differences in genetic materials and culture conditions. Some
fungi can produce laccase and manganese peroxidase, while others can produce only laccase [5, 6]. In
general, application of fungi or their extracellular enzymes are more favorable than those of other
organisms since fungi can decolorize several types of synthetic dyes having different chemical
structures [6], and ligninolytic enzymes originating from different fungal species can breakdown the
same dye at different levels [7]. Therefore, investigation of organisms useful in degrading several
complex and recalcitrant pollutants is an important approach in bioremediation.

Laccase is a copper-containing oxidoreductase enzyme recognized for its broad specificity in
catalyzing a wide range of substrates like lignin, phenolic and non-phenolic molecules, synthetic dyes
and aromatic amines coupled with reduction of oxygen [8]. It is evident that laccase production can be
enhanced by addition of aromatic inducers like benzyl alcohol, guaiacol, veratryl alcohol, and some
heavy metals [3, 9]. Laccase from several fungal species has been studied for its ability in
decolorization. Most of them are Trametes sp., Phanerochaete sp., Funalia sp., Pleurotus sp. [10] such
as Trametes versicolor, Trametes trogii, Phanerochaete chrysosporium, Aspergillus sp., Pleurotus
ostreatus, Coriolus versicolor and Funalia trogii [5, 8, 11-13]. In this study, a member of the
relatively under-investigated Lentinus sp., which is Lentinus polychrous, was studied for its
decolorizing performances using extracellular ligninolytic enzymes. L. polychrous is a famous edible
wood-degrading white rot fungus commonly found in northern and northeastern regions of Thailand.
This research aimed to monitor ligninolytic enzyme activity produced from L. polychrous and apply
the crude enzyme for decolorization of remazol brilliant blue R (RBBR). RBBR is a sulfonated
anthraquinone dye used as a starting substance for polymeric dye in textile industry [14] and
considered as a recalcitrant organopollutant containing complex aromatic structure. In this study,
several parameters like pH values, initial dye concentrations and initial enzyme concentrations, were
varied to determine the optimal condition for RBBR decolorization, as well as effects of mediators and
heavy metal ions on decolorization.

2. Materials and methods

2.1. Materials

RBBR (reactive blue 19), 2.2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and
hydroxybenzotriazole hydrate (HBT) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Bromophenol blue was obtained from LabChem. Methyl orange, chromium (III) chloride, and copper
(IT) sulphate were obtained from M&B, QReC, and Univar, respectively.

2.2. Culture condition for ligninolytic enzyme production

The fungus, L. polychrous, was grown on freshly prepared potato dextrose agar (PDA) for one week to
obtain the active fungal mycelium. Then, three mycelial bits (7 mm each) were transferred to 250 ml
Erlenmeyer flasks containing 100 ml potato dextrose broth (PDB) supplemented with 0.1 g of rice
straw powder and soybean pomace. The cultures were incubated at 27°C, 110 rpm for ligninolytic
enzyme production and enzyme activity in the supernatant was monitored every three days until day
15. Thereafter, the culture was centrifuged at 12,000 rpm for 10 min to obtain the mycelial free crude
enzyme, which would subsequently be tested for dye decolorization.

2.3. Ligninolytic enzyme activity determination
Enzyme activity of the three main ligninolytic enzymes, which are laccase, manganese peroxidase, and
lignin peroxidase were monitored every three days. Laccase activity was determined using 2,2'-azino-
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bis (3-ethylbenzothiazoline-6-sulphonic acid, ABTS) in acetate buffer, pH 4.5. Oxidation of ABTS
was spectrophotometrically determined by an increase in absorbance at 420 nm (€450 = 0.036 pM*cm™)
[4]. Measurement of manganese peroxidase and lignin peroxidase was modified from Bholay et al,
2012. Manganese peroxidase was monitored using 0.1 mg/ml phenol red in the presence of 0.1 mM
manganese sulfate, 1 mg/ml of bovine serum albumin, 0.1 mM hydrogen peroxide, 25 mM sodium
lactate, and 0.5 ml culture filtrate [15]. Oxidation of phenol red was monitored at 610 nm (€4 =
0.0446 yM'cm™) [16]. Lignin peroxidase was determined by monitoring the demethylation of
methylene blue to azure C [15]. The reaction contained 32 uM methylene blue in 50 mM sodium
tartarate buffer (pH 4.0), 10 ul of culture filtrate and 0.1 ml of 0.1 mM H,0,. The reaction was
incubated at room temperature for 1 hour and lignin peroxidase activity was measured at Agsonm
Percentage of methylene blue decolorization was calculated as (Agso of control — Agsy of test/Agso of
control) x 100. All enzyme activity reactions were stopped by adding 100 pul of H,SO,. One unit of
enzyme activity (U) was defined as the amount of enzyme required for oxidation of 1 pumol substrate
per minute.

2.4. Effects of different dye concentrations, pH values, and enzyme concentrations on decolorization
Different RBBR concentrations of 20, 40, 60, 80 and 100 mg/1 were prepared using citrate phosphate
buffer (pH 7.0). Each reaction contained 25 ml of RBBR and 2 ml of crude enzyme. To determine the
optimum pH, decolorization of RBBR was performed within the pH ranges of 3.0 — 7.0 and the
desired pH of the dye solution was prepared in citrate phosphate buffer. Each reaction contained 25 ml
of 20 mg/1 dye solution and 2 ml of crude enzyme. To determine the effect of enzyme concentrations
on decolorization, crude enzyme amounts of 0.5, 1, 1.5, 2 and 2.5 ml, having laccase activity of 0.095
U/ml, were tested for ability in decolorizing 20 mg/l RBBR. Each reaction contained 25 ml of dye
solution and different amounts of enzymes. All reactions were incubated at room temperature without
shaking, and decrease in absorbance was spectrophotometrically monitored at 0, 1, 2, 4, and 6 hours at
the absorbance of 592 nm. The reactions were tested in triplicate, and the experimental control was the
sample without the crude enzyme, performed under the same conditions.

2.5. Effect of mediators and heavy metal on dye decolorization

CuSO, (10, 20, 30 mg/l) and HBT (1, 5, 10 mM) were used as mediators on RBBR decolorization.
CrCl, (10, 20, 30 mg/l) was used to study effects of heavy metals on RBBR decolorization at the
optimum pH. Each mediator and heavy metal was added to 100 mg/l RBBR in citrate phosphate buffer
(pH 3.0). Each reaction contained 25 ml of dye solution and 2.5 ml of the crude enzyme. Monitoring
of dye decolorization was performed as described above. Absorbance spectra of the untreated and
treated samples were scanned using UV-VIS 1800 spectrophotometer (Shimadzu).

2.6. Percentage of dye decolorization
Percentage of dye decolorization was calculated using the following formula.

Decolorization efficiency (%) = [(Ar- A1)/ Aq] x 100

where, A; is initial absorbance of the heat inactivated crude enzyme, A+ is specific time absorbance
measured after incubation with the enzyme. The values shown were mean of triplicate with standard
deviation.

3. Results and dis cussion

3.1. Ligninolytic enzyme production

Ligninolytic enzyme production was studied by culturing the active mycelium of L. polychrous in
PDB medium supplemented with rice straw and soybean pomace. The results revealed that
extracellular ligninolytic enzymes secreted by L. polychrous were predominantly laccase, along with
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low levels of manganese peroxidase. Figure 1 shows that the maximum laccase activity of 0.095 U/ml
was obtained on day 15, and the activity was around six folds higher than that of manganese
peroxidase. It is possible that laccase activity might increase if longer incubation time is provided, and
addition of laccase inducers would stimulate fungal growth and enzyme production. Lignin peroxidase
was undetectable under the culture condition, which could be because the fungus lacks genes
responsible for lignin peroxidase production or the gene expression is suppressed [17]. For these
reasons, laccase was the major enzyme that played a vital role in decolorizing RBBR in this study.

0.10 +
0.08 +
0.06 +
0.04 +

0.02

Enzyme activity (U/ml)

Incubation time (day)
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Figure 1. Ligninolytic enzyme production by L. polychrous.

Ligninolytic enzyme production shown in the present study was in agreement with Wangpradit et
al., 2014 who reported that ligninolytic enzyme produced by L. polychrous was only laccase and
manganese peroxidase [6]. Another research showed that laccase production of L. polychrous on solid
substrates, corn husk, rice bran and rice husk was 0.145 U/ml on day 12, which was 1.5 times higher
than our study [18]. The different types and compositions of the culture medium as well as culture
conditions contribute to different amounts of enzyme production. It has been reported that ligninolytic
enzyme production by white-rot fungi substantially depends on medium compositions such as carbon
and nitrogen contents [9, 19]. When applying different types of carbon sources, L. crinitus grown in 10
g/l glucose decolorized the highest levels of RB220 dye up to 85%, while the culture with glycerol and
starch yielded low destaining activity of only 5-10% [19]. This indicated that different types of carbon
sources resulted in variable amounts of ligninolytic enzyme production, thus influencing
decolorization performance. Apart from Lentinus sp., other white rot fungi, P. ostreatus strain 32 and
P. ostreatus HAUCC 162 produced only laccase, while lignin peroxidase and manganese peroxidase
were undetectable [8, 20]. They revealed that laccase activity substantially increased with organic
nitrogen sources like peptone and yeast extract [8], and several metal ions, especially Cu®’, could
promote laccase production [20]. Ligninolytic enzyme of Polyporus sp. S133 was mostly laccase, and
production of lignin peroxidase and manganese peroxidase was relatively low [21].

3.2. Effect of RBBR concentrations on decolorization

Effect of RBBR concentrations on decolorization efficiency was performed at 20 - 100 mg/l dye
concentrations at pH 7.0. After 2 hours, 20 mg/l RBBR was decolorized up to 50%, and more than
40% decolorization was obtained with 40 and 60 mg/l RBBR as shown in Figure 2. It was observed
that destaining activity barely increased after 2 hours of incubation, possibly because the enzyme
becomes saturated with the substrate or enzyme denaturation occurs during a long incubation period.
Decolorization of 100 mg/l dye concentration was only 23% after 6 hours of incubation. The results
demonstrated that decolorization efficiency decreased with increasing dye concentrations. Our results
are similar to those of Mechichi et al, 2006 and Hadibarata et al, 2011, who revealed that dye
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decolorization decreased with increasing concentrations of RBBR, suggesting that the rate of reaction
increased with the substrate concentrations until saturation [12, 21]. Also, adding high concentrations
of dye as a substrate directly to the culture could be toxic to fungal growth, and the growth of P.
ostreatus was inhibited when initial RBBR concentration increased to 100 mg/l demonstrating the
inhibitory effects of the dye on fungal growth [5].
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Figure 2. Decolorization of different RBBR concentrations.

3.3. Effect of pH values on decolorization

RBBR decolorization was performed at different pH values from 3.0 to 7.0 in citrate phosphate buffer
containing 20 mg/l RBBR and 2 ml of crude enzyme. Among five tested pH values, the maximum
decolorization was obtained at pH 3.0 where majority of RBBR decolorization occurred at 78% within
2 hours of incubation and the maximum decolorization of 86% was obtained within 4 hours as shown
in Figure 3. It was obvious that the enzyme could effectively decolorize RBBR at low pH ranges from
3.0 to 5.0, and the dye was distinctly degraded within the first 2 hours of incubation, after that the
percentage of decolorization barely increased. The decolorization efficiency was greatly decreased at
pH 6.0 and 7.0 with a removal efficiency of only 59% and 47% at 6 hours, respectively. It was evident

that dye decolorization largely depended on pH levels and the decolorization was more favorable in
acidic environment.
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Figure 3. Optimum pH for decolorization of RBBR.
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The maximum decolorization efficiency at pH 3.0 was in accordance with Sarnthima et al., 2009
who reported that decolorization of 20 mg/l RBBR at pH 3.0 was 58% within 1 hour [22]. They also
reported using 0.2 U/ml of crude laccase which was almost twice than that of our study. Another
observation was that L. polychrous decolorized 66% of RBBR at pH 4.0 within 3.5 hours, whereas the
optimum pH on ABTS substrate was 3.0, and relative activity continuously decreased with increasing
pH values from 3.0 to 7.0, and the remaining activity of 16% at pH 7.0 [23]. The higher catalytic
activity at low pH ranges might contribute to higher performance of RBBR decolorization in acidic
environment and small decolorization at neutral pH. It was reported that most laccase produced from
fungi have the optimum pH in acidic ranges [14]. Laccase from Lentinus sp. showed the optimum pH
at 2.5, 3.5, and 5.0 on the substrates ABTS, 2,6-DMP, and guaiacol respectively, indicating that the
optimum pH mainly depended on the substrates [14]. It is noticeable that the optimum pH values were
distinct in the acidic ranges, where laccase had a higher catalytic performance. Hadibarata et al., 2011
found that the optimal RBBR decolorization rate of laccase purified from Polyporus sp. S133 was at
pH 5.0 and that the crude laccase was unable to decolorize RBBR atpH 7.0 [21].

According to dye’s chemical structure and enzyme conformation, electrical charge of the dye and
enzyme plays an important role in decolorization. RBBR contains sulfonic (—SO’5—) functional group
which is negatively charged, while electrical charge at the active site of the enzyme is largely
dependent on the pH of the solution. At lower pH values with high concentration of H", the active site
has a strong positively charged facilitating binding with anionic sulfonic group of the RBBR dye; thus,
high removal efficiency is achieved at low pH values. On the other hand, an active site at higher pH
values contains less positively charged H', therefore ionic attraction between the dye and enzyme is
less, and a reduction in decolorization efficiency is thus observed [24].

To determine the optimum pH of other synthetic dyes, decolorization of bromophenol blue and
methyl orange was studied in pH ranges from 3.0 to 7.0 (data not shown). The results showed that
both dyes had the optimum pH at 4.0 with maximum decolorization efficiency of 73% and 71% for
bromophenol blue and methyl orange, respectively (Table 1). Similar observation was found by
Rakrudee 2009 showing that the optimum pH for bromophenol blue decolorization was at pH 4.0 with
37% decolorization efficiency [22]. The dye decolorization i this study indicated that the optimal pH
of laccase was substrate dependent and that the enzyme was more active in the acidic range. It was
also noteworthy that bromophenol blue and methyl orange decolorization was less than 5% at pH 7.0.
However, crude laccase produced from L. crinitus was active in a wide range of pH values from acidic
to basic conditions and was able to decolorize more than 70% of reactive blue 220 from pH 3.5 to 8.0.
[19].

Table 1. Decolorization of other synthetic dyes by L. polychrous.

Dyes Types Optimum pH T(lhm)e Deco(l(?/[r)l)zatlon
Bromophenol blue Triphenylmethane 4.0 2h 70
12h 73
Methyl orange Az0 4.0 2h 37
12h 71

In general, different dye structures affect decolorization capacity and laccase decolorizes
anthraquinone dye more effective than other dye groups [18], and the most resistant dyes are
triphenylmethane and azo dyes [25]. Our result found that the most degradation-resistant group was
azo (methyl orange), followed by triphenylmethane (bromophenol blue), while anthraquinone (RBBR)
was the most degradable dye. However, the decolorization efficiency of bromophenol blue was almost
as high as that of RBBR, as crude laccase also decolorized bromophenol blue as effectively. Similarly,
crude enzyme from Paraconiothyrium variabile also had a good capacity in decolorizing the
triphenylmethane dye [7]. This could be because different isoforms of crude laccase may be effective



4th International Conference on Agricultural and Biological Sciences IOP Publishing
IOP Conf. Series: Earth and Environmental Science 185 (2018) 012004  doi:10.1088/1755-1315/185/1/012004

in decolorizing different types of dyes and some isoforms are capable of decolorizing
triphenylmethane or azo dyes [20]. Unlike other dyes which were decolorized to reach maximum
efficiency within 2 to 4 hours, degradation of methyl orange took 12 hours to reach maximum
degradation of 72%, while decolorization at 2 hours was only 32%. This indicated that methyl orange
was more resistant than other groups and longer degradation time was required to reach maximum
decolorization. It was noteworthy that three types of dyes tested in the present study had optimal pH in

acidic ranges, which might contribute to high catalytic performance of the crude laccase in low pH
ranges.

3.4. Effect of enzyme concentrations on decolorization

Effect of enzyme concentrations on decolorization varied from 0.5 to 2.5 ml (with laccase activity of
0.095 U/ml). The results revealed that decolorization efficiency increased with increasing enzyme
concentrations. The difference in decolorization was obvious within the first two hours after
incubation where higher enzyme concentration resulted in higher decolorization rate. The maximum
decolorization of 89% was obtained when using 2.5 ml of crude enzyme, and the lowest decolorization
of 68% was obtained when using 0.5 ml of crude enzyme as shown in Figure 4. It was noticeable that
more than 80% of the dye was decolorized within the first 2 hours when using more than 2 ml of crude
enzyme.

100 +

L ‘0

Decolorization efficiency (%)

Time (hours)

—05mL —+1mL —«15mL -#2mL -€-25mL

Figure 4. Effect of different enzyme concentrations on decolorization.

Enzyme activity was an important factor in decolorization. The decolorization efficiency mainly
increased with enzyme concentrations [18]. Hsu et al., 2012 found that laccase from Lentinus sp.
decolorized RBBR only 29% with 1 U/ml; however, by increasing laccase activity to 20 U/ml, the
decolorization efficiency increased to 88% [14]. Moreover, laccase from Lentinus sp. showed better
decolorization efficiency than that of a commercial 7. versicolor. It was observed that high
decolorization efficiency could be achieved if higher amount of laccase was used [22]; nevertheless,
adding excess amount of crude enzyme for effluent decolorization in practical application might pose
another environmental problem. This is because high protein contents or organic matters in the crude

enzyme might require further wastewater treatment. Therefore, an appropriate amount of enzyme
concentration should be applied.

3.5. Effect of mediators and metal ions on decolorization
As decolorization efficiency of 100 mg/l RBBR was relatively low, this initial concentration was
chosen to test the effect of the mediators CuSO,4 and HBT, on improving decolorization. In addition,
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chromium, which has usually been found in wastewater of textile industry, was selected to test the
effect of metal ion on decolorization [1]. The result showed that addition of HBT (1, 5, 10 mM),
CuSO, and CrCl; (10, 20, 30 mg/l) could increase decolorization efficiency, and CuSO, was better
than HBT and CrCl, in enhancing decolorization, which could be because laccase is a copper-
containing oxidase enzyme requiring Cu”" to perform its active function. The maximum decolorization
efficiency of the sample with CuSO, was 74% when using 30 mg/1 CuSO,, which was more than twice
than that of the sample without mediator (Figure 5). Addition of HBT increased decolorization and 1
mM HBT was the best concentration to enhance decolorization up to 50%. However, decolorization
efficiency did not correspond with increasing concentrations of HBT to 5 and 10 mM, which might be
attributed to the inhibitory effect of excessive concentrations of mediators. Also, chromium could
enhance decolorization up to 65% using 10 mg/1 CrCl, and using higher concentrations of Cr’* tended
to decrease decolorization efficiency (Figure 6). Decolorization of the samples with 20 and 30 mg/l
Cr'" was 57% and 54%, respectively, at 6 hours of incubation. This indicated that decolorization
efficiency was potentially affected by high concentration of Cr’", this could be because of the
interaction of the high metal ion concentration interfered with the electron transport system of laccase
contributing to its instability [26, 27]. Absorbance spectra of the samples with and without the
mediators showed the peak at maximum wavelength around 592 nm (Figure 7). Degradation of the
sample with CuSO, was the most effective in decolorizing RBBR; showing the lowest peak compared
to the absorbance spectrum of the sample before decolorization.
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Figure 5. Effect of mediators, CuSO, and HBT on decolorization.
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Figure 6. Effect of heavy metal, Cr’* on decolorization.
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Figure 7. Absorbance spectra of the native RBBR and the decolorized RBBR in the presence and
absence of mediators at 24 hours of incubation.

In the presence of mediators, laccase enzyme oxidizes low molecular weight mediators to stable
radicals or redox mediators, then the radicals oxidize non-laccase substrates. Therefore, the mediator
that has high affinity to the substrate, will enhance a laccase-mediator system increasing
decolorization efficiency [26]. It has been reported that using redox mediators to enhance RBBR
decolorization by adding Cu®" to the culture medium, a maximum RBBR decolorization of 79% was
obtained, compared to other metal ion mediators [26]. In addition, crude laccase (30 U/ml) produced
from P. ostreatus strain 32 was able to decolorize 70% of remazol brilliant blue SN4R and the
decolorization efficiency increased up to 90% in the presence of 0.16% ABTS mediator. However,
inhibitory effect in decolorization appeared when an excessive amount of ABTS was applied [8].
Apart from using fungi for decolorization, cyanobacteria were also able to perform dye decolorization.
Afreen et al., 2017 found that laccase from cyanobacteria, Spirulina platensis CFTRI, could
decolorize 47% of 100 mg/l RBBR within 48 hours and decolorization efficiency increased almost
twice in the presence of redox mediator syringaldehyde [3]. On the other hand, laccase produced from
L. polychrous in the present study rapidly decolorized the dye up to 67% in the presence of CuSO,4 in a
much shorter time which was within 2 hours, indicating high performance of the enzyme produced
from the fungi. Among ligninolytic enzymes produced from the fungus, Funalia trogii, only laccase
was responsible for RBBR decolorization, and decolorization was achieved without addition of
hydrogen peroxide or redox mediator [5]. Similarly, RBBR decolorization in this study occurs without
addition of H,O, or MnSQO,, the main cofactor and substrate for lignin peroxidase and manganese
peroxidase, indicating that laccase is the enzyme that plays a vital role in RBBR decolorization.

4. Conclusion

Ligninolytic enzyme produced by L. polychrous is mainly laccase, and it is responsible for RBBR
decolorization. The crude laccase is effective in decolorization of RBBR at pH 3.0, while small
decolorization is obtained at pH 6.0 and 7.0. At this optimum pH, around 78% of 20 mg/l RBBR is
decolorized within 2 hours, which is relatively fast compared to some of the other fungal species or
cyanobacteria, and decolorization decreases with increasing dye concentrations from 20 to 100 mg/1.
By increasing concentrations of crude enzymes, the decolorization efficiency increases. In addition,
decolorization efficiency increases more than twice in the presence of the mediator CuSO,. However,
increasing concentration of chromium tends to inhibit dye decolorization, thus contamination of
chromium in the effluent of textile industry might decrease decolorization efficiency of the crude
laccase. Using crude extract produced by L. polychrous to decolorize synthetic dyes is a simple,
environmentally friendly and ecofriendly method which has high potential in the degradation of
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several synthetic dyes and could also be applied for remediation of other aromatic and xenobiotic
pollutants.
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