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Abstract. Under the circumstance of rapid development, the contradiction and balance 

between energy consumption, carbon emission and urban living environment are increasingly 

become one of the problems to be solved in contemporary China. Housing has demonstrated 

tremendous potential to play a major role in the reduction of carbon emission, to gain a balance 

between reducing carbon emission and meeting increasing demand. Good daylighting is 

irreplaceable in improving the quality of housing and meeting the daily physiological and 

psychological needs of the residents. Thus, it is necessary and insightful to evaluate daylighting 

of housing from the perspective of carbon emission reduction. In this paper, three design 

control factors of window height, window/wall ratio and aspect ratio of window are studied. 

Several preliminary design optimization strategies based on residential lighting in Shanghai are 

proposed. 

1. Introduction 

For carbon emission of housing, it is affected by many factors. Among them, as an early phase of 

decision making, design plays a decisive role affecting the construction phase and use situation 

coming afterwards. Therefore, carbon emission should be taken into account at the initial phase of 

construction and also as an important design basis and standard for evaluating. 

In the current situation of China, the main problems of daylighting design of urban housing mainly 

include two aspects: on the one hand, it just stays at the level of pandering to relevant existing building 

codes; on the other hand, it tends to be more blind pursuit of transparency [1]. Both of the above may 

cause the actual use of housing to fail to meet the design expectations and bring sensory experience 

and environmental problems related to energy consumption and carbon emissions [2]. In this paper, 

energy consumption and daylighting simulation by using design aid software combined with empirical 

analysis, questionnaire investigation are applied to study the daylighting design related control 

elements. On this basis, the optimization strategies of daylighting design of housing are proposed to 

try to achieve a “win-win” of carbon emission reduction and good daylighting in housing projects. 
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2. Software Simulation 

The research object of this paper is a typical middle-rise housing project in Shanghai (figure 1), using 

it as a reference, the software simulation study is carried out. PKPM-Daylight and PKPM-PBECA, 

developed and commonly used in contemporary China as design aid tools, are selected as simulation 

software. The research variables are window sill height, window/wall ratio and aspect ratio of window 

[3]. After process of modelling and parameter settings, the simulation outcomes of each variable are 

gathered. The main standards for daylighting condition in this research are average daylighting 

coefficient and daylighting distribution conditiions [4, 5]. 

 

 

Figure 1. The typical plan of the selected middle-rise housing project. 

2.1. Height of window sill 

The following figures (figure 2-figure 5) show the influence of changing the height of window sill of 

each orientation on the daylighting coefficient and energy consumption during the use phase. It can be 

seen that the influence of changing the height of window sill on energy consumption is very small and 

can be ignored. The daylighting coefficient increases with the increase of the height of the window sill, 

reaching its peak value and inflection point when the height of window sill is 0.90m. 

 

 

Figure 2. Increments of daylighting coefficient and total energy consumption 

influenced by east windowsill heights. 
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Figure 3. Increments of daylighting coefficient and total energy consumption 

influenced by south windowsill heights. 

 

 

Figure 4. Increments of daylighting coefficient and total energy consumption 

influenced by west windowsill heights. 

 

 

Figure 5. Increments of daylighting coefficient and total energy consumption 

influenced by north windowsill heights. 
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2.2. Window/wall ratio 

By adjusting the window/wall ratio of each orientation, that is, changing the total window area of each 

orientation will significantly affect the lighting effect and the energy consumption during the use 

phase of the house, and the increase will basically show a linear trend. In terms of orientation, when 

the window/wall ratio is increased, the order of the increment of carbon emissions per unit from large 

to small is south > east ≈ west > north, the order of the increase of indoor average daylighting 

coefficient is east ≈ west > north > south. Therefore, when the window/wall ratio is considered simply 

from the view of the lighting design of the house, it is an effective strategy to increase the window 

wall ratio of each orientation. 

2.3. Aspect ratio of window 

The effect of changing the aspect ratio of window, the ratio of window length to width, on energy 

consumption and carbon emissions is negligible in the case of the same window/wall ratio. However, 

from the perspective of indoor daylighting coefficient, when the window/wall ratio is less than 0.30, 

increasing the window width has a significant advantage over the increase of window height in 

increase of the lighting coefficient. The difference between these two can be nearly seven times based 

on the simulation results. When the window/wall ratio is greater than 0.30, the advantages of adjusting 

window width in increasing daylighting coefficient still exist. It is only that the difference between the 

two decreases gradually with the increase of window width and window height until it finally 

disappears (figure 6-figure 13). 

 

 

Figure 6. Increments of lighting coefficient and total energy consumption 

influenced by east window/wall ratio (window width). 

 

 

Figure 7. Increments of lighting coefficient and total energy consumption 

influenced by east window/wall ratio (window height). 
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Figure 8. Increments of lighting coefficient and total energy consumption 

influenced by south window/wall ratio (window width). 

 

 

Figure 9. Increments of lighting coefficient and total energy consumption 

influenced by south window/wall ratio (window height). 

 

 

Figure 10. Increments of lighting coefficient and total energy consumption 

influenced by west window/wall ratio (window width). 
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Figure 11. Increments of lighting coefficient and total energy consumption 

influenced by west window/wall ratio (window height). 

 

 

Figure 12. Increments of lighting coefficient and total energy consumption 

influenced by North window/wall ratio (window width). 

 

 

Figure 13. Increments of lighting coefficient and total energy consumption 

influenced by North window/wall ratio (window height). 
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3. Calculation of Carbon Emissions 

The carbon emission calculation system of this paper is derived from Carbon Emission Calculation 

Standard CECS 374-2014 in China [6]. On the basis of this specification, the scope of carbon emission 

units studied in this paper is reduced to the following two aspects which have the highest correlation 

with residential lighting, and the sum of the two is the number of residential carbon emissions in the 

whole life cycle (formula 1): 

 ∆E=∆EM+∆EU (1) 

In this formula, ΔE is the change of carbon emission (kgCO2eq) in whole life cycle due to residential 

lighting related variables; ΔEM is the change of carbon emission (kgCO2eq) caused by relevant 

lighting design variables of production, construction, demolishing and recycling phase of residential 

building; ΔEU is the change of carbon emission (kgCO2eq) in the operation phase of residential 

building due to residential lighting design variables. Among them, ∆EM can be calculated by 

consulting the Athena Eco Calculator for Residential Assemblies database. ∆EU can be simulated and 

calculated by PKPM-PBECA energy consumption software. 

3.1. Calculation of carbon emissions in use phase 

According to the national grid emission factors released by the National Climate Change Agency of 

the National Development and Reform Commission, the carbon emission can be calculated by 

bringing the energy consumption into the following formula 2 and formula 3: 

 ΔEU=EFE×ΔCE (2) 

 EFE=(EFgrid, OM, y+EFgrid, BM, y)/2 (3) 

ΔEU represents the carbon emission change of residential building in use phase (kgCO2eq); EFE 

represents the grid baseline emission factor in Shanghai area (kgCO2eq/KWh); ΔCE represents the 

annual total energy consumption difference of residential building in use phase (KWh); EFgrid, OM, y 

represents the electricity marginal emission factor of the regional grid (kgCO2eq/KWh); EFgrid, BM, y 

represents the capacity marginal emission factor of the regional grid (kgCO2eq/KWh). 

Table 1. Regional power grid division of China 

Region Provinces and Cities 

East Shanghai, Jiangsu Province, Zhejiang Province, Anhui Province, Fujian Province 

 

Table 2. Regional grid emission factor of China, 2015 

Regional Grid EFgrid,OM,y (kgCO2eq/KWh) EFgrid,BM,y (kgCO2eq/KWh) 

East 0.8112 0.5945 

3.2. Calculation of carbon emissions in use phase 

As can be seen from the tables above (table 1 and table 2), Shanghai belongs to the east regional grid 

division. According to the data from the tables, the EFE of east regional grid is 0.7029 

(kgCO2eq/KWh). With the energy consumption data taken into the formula 2 respectively, the carbon 

emission data is calculated. The window/wall ratio data can be considered as an average value of the 

counterpart of width and height. The outcomes are listed in the following tables (table 3 and table 4). 

 

 

 

 



8

1234567890 ‘’“”

2018 9th International Conference on Environmental Science and Technology IOP Publishing

IOP Conf. Series: Earth and Environmental Science 182 (2018) 012017  doi :10.1088/1755-1315/182/1/012017

 

 

 

 

 

 

Table 3. Annual increment of carbon emissions influenced by windowsill height in use phase 

Windowsill Height（m） 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 

East (kgCO2eq/m
2
) 0.0000 0.0006 0.0014 0.0039 0.0078 0.0116 0.0163 0.0167 

South (kgCO2eq/m
2
) 0.0000 0.0057 0.0084 0.0106 0.0120 0.0127 0.0127 0.0159 

West (kgCO2eq/m
2
) 0.0000 0.0039 0.0082 0.0149 0.0227 0.0331 0.0421 0.0404 

North (kgCO2eq/m
2
) 0.0000 0.0086 0.0176 0.0255 0.0282 0.0306 0.0331 0.0363 

 

Table 4. Annual increment of carbon emissions caused by window/wall ratio in use phase 

Window/Wall Ratio 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

East (kgCO2eq/m
2
) 0.00 1.10 2.27 3.76 4.90 6.24 7.43 8.53 9.58 10.72 11.27 

South (kgCO2eq/m
2
) 0.00 0.78 1.77 2.75 4.02 6.02 7.71 9.96 11.83 14.00 15.24 

West (kgCO2eq/m
2
) 0.00 1.16 2.34 3.49 4.63 5.93 7.02 8.09 9.17 10.19 10.68 

North (kgCO2eq/m
2
) 0.00 0.32 1.06 1.79 2.48 3.20 3.91 4.63 5.32 6.09 6.42 

3.3. The calculation of carbon emission in the phase of materialization and demolition 

Each residential building needs to go through a long process of materialization, from production, 

manufacturing, processing and transportation of different materials and components; assembling and 

construction; at last, the demolition phase, which includes taking care of the remaining, recycling and 

so on. All of these processes are accompanied by the carbon emissions. This section will focus on 

calculating the carbon emission changes in the materialization and demolition phases of residential 

buildings caused by lighting design. 

Residential buildings, like most other types of buildings, consist of envelop structure and supporting 

structure. In previous software simulations, windowsill height and window/wall ratios were adjusted 

based on the reference model with other parameters staying unchanged, thus, it can be regarded as no 

change in the supporting structure. Therefore, the carbon emissions in the materialization and 

demolition phases are reflected in the changes of the envelope structure. 

It can be considered that changing the windowsill height does not have influence on material change. 

While changing the window/wall ratio results in a change of the window area and wall area due to the 

total area is a fixed constant for a building. Due to the fact that the materialization and demolition 

processes of different envelope structures are also different, the changes of the amount of different 

envelope structures are the main factors that change the carbon emissions of residential buildings in 

these phases. The envelope materials of the reference residential building are concrete block and 

insulated aluminium alloy window frame with double low-e hollow glazing. Thus, the carbon 

emission caused by window/wall ratio can be calculated by applying the formula 4, 5 listed below: 



9

1234567890 ‘’“”

2018 9th International Conference on Environmental Science and Technology IOP Publishing

IOP Conf. Series: Earth and Environmental Science 182 (2018) 012017  doi :10.1088/1755-1315/182/1/012017

 

 

 

 

 

 

 ∆EMG=∆RO×SO×CMC (4) 

 ∆EMC=(1-∆RO)×SO×CMC (5) 

ΔRO represents the window-wall ratio; SO represents the envelope area of each orientation (m
2
); ΔCMG 

is the reference value of carbon emission per unit area (kgCO2eq/m
2
) per unit area of insulated 

aluminium alloy window frame with double low-e hollow glazing; ΔCMC is the carbon emission per 

unit area of concrete block wall (kgCO2eq/m
2
). 

The reference values for the materials used as envelope structure are obtained from the database which 

is widely used in the United States, the Athena Eco Calculator for Residential Assemblies, as 

mentioned before. This database collects a large number of homes in the United States, after 

conducting a huge amount of calculations and material statistics, a systematic database for carbon 

emission calculation is completed. The following calculation of the materialization and demolition 

phase will be conducted on a basis of this database. 

As mentioned before, the adjustment of the windowsill height does not affect the amount of material 

used for the building envelope. Thus, it can be considered that different settings of windowsill height 

do not cause any carbon emission changes in materialization and demolition phase. 

 

 

Figure 14. Carbon emission factor of wall per unit area in the Athena database. 

 

 

Figure 15. Carbon emission factor of window per unit area in the Athena database. 

 

As shown in the figures listed above (figure 14 and figure 15), it can be seen that the closet wall 

material is the No.3 type wall (which is concrete block, 2 coat stuccos over porous surface, R5 XPS 

continuous insulation). Its GWP value is 7.07kgCO2eq/ft
2
, which converted to a metric unit is 

78.56kgCO2eq/m
2
; similarly, the GWP of insulated aluminium alloy window frame with double low-e 

hollow glazing (aluminium operable low-e double glazing) is 67.63kgCO2eq/ft
2
, which converted to 

metric units is 751.44kgCO2eq/m
2
. 

 ∆EM=(∆EMG+∆EMC)/SC (6) 

ΔEM represents the change of carbon emission per unit area (kgCO2eq/m
2
) caused by envelope 

structure change in materialization and demolition phase; ΔEMG represents the change of carbon 

emission caused by the area change of aluminium operable low-e double glazing (kgCO2eq); ΔEMC 

represents the change in carbon emissions caused by concrete block walls with XPS insulation 
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(kgCO2eq); SC represents the total floor area (m
2
). Taking the related parameters into formula 4, 5 and 

6 respectively for calculation, the outcomes are listed below (table 5). 

Table 5. Increment of carbon emissions influenced by window/wall ratio in materialization and 

demolition phase 

Total Floor Area 3442.17m2      East/West Surface Area 799.22m2.       South/North Surface Area 967.98m2 

Window/Wall Ratio 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

East (kgCO2eq/m2) 0.00 15.62 31.25 46.87 62.49 78.12 93.74 109.36 124.99 140.61 156.23 

South (kgCO2eq/m2) 0.00 18.92 37.85 56.77 75.69 94.61 113.54 132.46 151.38 170.30 189.22 

West (kgCO2eq/m2) 0.00 15.62 31.25 46.87 62.49 78.12 93.74 109.36 124.99 140.61 156.23 

North (kgCO2eq/m2) 0.00 18.92 37.85 56.77 75.69 94.61 113.54 132.46 151.38 170.30 189.22 

3.4. The calculation of carbon emission in the phase of materialization and demolition 

According to the formula 1 proposed previously, the carbon emission changes in whole life cycle can 

be calculated by taking all results gathered above in materialization phase, use phase, and demolition 

phase. To simplify the process, the use phase is calculated as 50 years. The final results are listed as 

below (table 6 and table 7). As can be seen from the chart above, the carbon emission increment 

caused by window/wall ratio are significantly more than the counterpart of windowsill. Therefore, the 

window/wall ratio may be the most potential aspect that should be pay more attention to when dealing 

with carbon emission issues of residential buildings. 

Table 6. Increment of carbon emissions influenced by windowsill height in whole life cycle (50 years) 

Windowsill Height（m） 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 

East (kgCO2eq/m
2
) 0.00 0.03 0.07 0.19 0.39 0.58 0.82 0.84 

South (kgCO2eq/m
2
) 0.00 0.29 0.42 0.53 0.60 0.63 0.63 0.80 

West (kgCO2eq/m
2
) 0.00 0.19 0.41 0.75 1.13 1.65 2.10 2.02 

North (kgCO2eq/m
2
) 0.00 0.43 0.88 1.28 1.41 1.53 1.65 1.82 

 

Table 7. Increment of carbon emissions influenced by window/wall ratio in whole life cycle (50 years) 

Window/Wall Ratio 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

East (kgCO2eq/m2) 0.00 70.62 144.75 234.87 307.49 390.12 465.24 535.86 603.99 676.61 719.73 

South (kgCO2eq/m2) 0.00 57.92 126.35 194.27 276.69 395.61 499.04 630.46 742.88 870.30 951.22 

West (kgCO2eq/m2) 0.00 73.62 148.25 221.37 293.99 374.62 444.74 513.86 583.49 650.11 690.23 

North (kgCO2eq/m2) 0.00 34.92 90.85 146.27 199.69 254.61 309.04 363.96 417.38 474.80 510.22 

4. Carbon emission reduction potential of household behaviour influenced by daylighting design 

4.1. Questionnaire Survey 

The previous parts of this paper define and discuss the main influencing factors of residential carbon 

emissions in this research, which can be classified as the materialization and the demolishment phase 

and the use phase. Among them, the carbon emission of the use phase is not only related to the energy 
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consumption of the equipment which is determined by the physical performance of the residential 

enclosure structures, but also closely related to the household behaviour, like habits of using 

household appliance and other equipment [7]. The impact of household behaviour on residential 

carbon emissions is often studied isolated or ignored, systematic, comprehensive demonstration and 

research need to be further explored. With the research perspectives being continuous widening in 

recent decades, more and more scholars continue to raise awareness of energy conservation and 

carbon emission reduction in many areas. With sociology, behaviour, environmental psychology and 

other multidisciplinary fields and other more perspectives emerging, the majority of scholars are 

gradually study in this area deeper. Household behaviour has a potential impact on residential carbon 

emissions in residential buildings, which makes it worth to be explored [7, 8]. 

The above section outlines the impact of household behaviour on residential carbon emissions. In 

order to explore further, a questionnaire survey is conducted, as a supplementary study for simulation, 

to try to understand how residential lighting, household behaviour and emission reduction affect each 

other in hot summer and cold winter area [9,10]. The entire research system is enriched by analysing 

and summarizing the survey results, screening out the key factors. 

4.2. Analysis of outcome 

As for why using artificial lighting, only 11.1% of the sample preferred artificial lighting [11]. More 

people are forced to use artificial lighting because of the inadequate daylighting and poor lighting 

quality. The factors of residential design will also have a certain impact on the use of equipment. The 

shading, for instance, is a common method for controlling direct sunlight and radiant heat into the 

interior in summer times, the effect of the physical characteristics of residential buildings is without 

doubt. As can be seen from figure 16 and figure 17, the potential behaviour impact on household has 

been illustrated. In units with shading, the family members have a higher preference for passive 

cooling ways to enjoy a comfortable natural climate than the members living in the houses without any 

shading equipment. Equipped with the exterior louvers, household behaviour of air conditioning in the 

summer has been shown an increment proportion to open intermittently than the counterparts of the 

units without shading (11.11%); while the proportion of household to set a low running temperature of 

cooling equipment decrease significantly as well; at the same time, the proportion of household to set 

high temperature of air conditioning in summer is relatively high in shading residential, especially for 

exterior shading louvers (35.29%). On one hand, among all forms of shading types shown in the figure 

above, the exterior shading types such as louvers, balcony and building shape shading have more 

influence in changing the behaviour of setting the operating temperature of cooling equipment in 

summer than the interior shading form. On the other hand, conversely, when heating equipment was 

used in winter, the proportion of household to set operating temperatures in residential units without 

shading show a higher number in operating their devices intermittently (22.22%) than the counterpart 

of the residential units with shading. 

 

 

Figure 16. Shading and cooling, heating preference. 
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Figure 17. Shading and behaviour of cooling equipment. 

5. Summary 

The research work of this paper is conducted by applying simulation, empirical study, field 

investigation and research and so on. Through the quantitative analysis, the possibility of carbon 

emission reduction in residential lighting design is discussed in a certain framework. The main 

conclusions are summarized as follows. 

(1) Height of windowsill. Based on the simulation and empirical research, when the window area is a 

fixed value, the most cost-effective approach to improve the indoor lighting coefficient is to increase 

the height of the windowsill appropriately, and the effect gets to the best when height of the 

windowsill reaches about 0.90m; after this turning point, the lighting coefficient goes down with 

height of the windowsill increasing; the evenness of indoor daylighting distribution improved with the 

height of the windowsill increasing; as for the carbon emission consideration, with the increment of 

indoor lighting coefficient, the carbon emission increment is so small that can be ignored. Combining 

these two aspects, design an appropriate windowsill height can be an efficient way in residential 

design for improving indoor lighting conditions to some extent without causing significant carbon 

emission increment, which is a suitable sustainable design strategy under the context of carbon 

emission reduction. And the recommendation height for windowsill is 0.90m. 

(2) Window/wall ratio. By adjusting the window/wall ratio of different orientations, that is, changing 

the window area in each direction respectively when the total area of each direction is a fixed value, 

the residential lighting efficient will be significantly affected. Increasing the window/wall ratio is a 

direct way to improve the residential lighting condition, but it is also accompanied by a considerable 

increment in carbon emissions in both use, materialization and demolition phase. And the growth rate 

between the carbon emission increment and lighting coefficient shows a linear correlation; taking the 

direction of the window into consideration, the order of carbon emission increment per unit is south > 

east ≈ west > north; the order of average daylighting coefficient increment is east ≈ west > north > 

south. The recommendation window/wall ratio for south direction can be summarized as 0.40-0.50. 

(3) Aspect ratio of window. When the window/wall ratio is a fixed value, or in other words, the total 

area of window is a fixed value, the carbon emission increment caused by changing the shape of 

window in each direction is almost negligible. However, the shape of window does make a notable 

difference when it comes to the indoor lighting coefficient distribution. When window/wall ratio is 

less than 0.3, increasing the window width has significant advantages for increasing the lighting 

coefficient compared with increasing the window height, the difference between these two is almost 

up to 7 times; while window/wall ratio is more than 0.3, the advantages of adjusting the window width 

in increasing the indoor natural daylighting effect still exist, but the differences between these two 

gradually decrease. Given the carbon emission can be ignored for adjusting the shape of the window, 

which in most situations, widths and heights in residential buildings, if other design conditions permit, 

the better design strategy of improving lighting from the carbon emission perspective is to increase the 

window width first instead of increasing the window height. Especially when the window height or the 

height of windowsill is below 30% or less of the floor height. 
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In addition, through a series of qualitative analysis of questionnaire survey, it can be concluded that 

residential lighting design has the potential to reduce carbon emissions by influence the household 

behaviour toward the operation of cooling and heating equipment, such as proper shading design will 

affect the cooling habits and reduce household reliance on cooling equipment so that it will reduce 

carbon emission in use phase to some extent. 

In summary, the daylighting design in the context of carbon emission reduction is a relatively 

complicated and multi-variable comprehensive consideration. And a considerate and appropriate 

lighting design has many potentials in balancing carbon emissions and lighting conditions. 
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